Module “scheil”¶
- 
class tc_python.scheil.CalculateSecondaryDendriteArmSpacing¶
- Bases: - tc_python.scheil.ScheilBackDiffusion- Configures a secondary dendrite arm spacing calculation used by Scheil with back diffusion. The used equation is - c * cooling_rate^(-n)with- cand- nbeing provided either by the user or taken from the defaults.- 
set_c(c: float = 5e-05)¶
- Sets the scaling factor - cin the governing equation- c * cooling_rate^(-n).- Default: 50 µm - Parameters
- c – The scaling factor [m] 
- Returns
- This - CalculateSecondaryDendriteArmSpacingobject
 
 - 
set_cooling_rate(cooling_rate: float = 1.0)¶
- Sets the cooling rate. - Default: 1.0 K/s - An increased value moves the result from equilibrium toward a Scheil-Gulliver calculation. - Parameters
- cooling_rate – The cooling rate [K/s] 
- Returns
- This - CalculateSecondaryDendriteArmSpacingobject
 
 - 
set_fast_diffusing_elements(element_names: List[str])¶
- Sets elements as fast diffusing. This allows redistribution of these elements in both the solid and liquid parts of the alloy. - Default: No fast-diffusing elements. - Parameters
- element_names – The elements 
- Returns
- This - CalculateSecondaryDendriteArmSpacingobject
 
 - 
set_n(n: float = 0.33)¶
- Sets the exponent - nin the governing equation- c * cooling_rate^(-n).- Default: 0.33 - Parameters
- n – The exponent [-] 
- Returns
- This - CalculateSecondaryDendriteArmSpacingobject
 
 - 
set_primary_phasename(primary_phase_name: str = 'AUTOMATIC')¶
- Sets the name of the primary phase. - The primary phase is the phase where the back diffusion takes place. If AUTOMATIC is selected, the program tries to find the phase which will give the most back diffusion. That behavior can be overridden by selecting a specific primary phase. - Default: AUTOMATIC - Parameters
- primary_phase_name – The phase name (or AUTOMATIC) 
- Returns
- This - CalculateSecondaryDendriteArmSpacingobject
 
 
- 
- 
class tc_python.scheil.ConstantSecondaryDendriteArmSpacing(secondary_dendrite_arm_spacing: float = 5e-05)¶
- Bases: - tc_python.scheil.ScheilBackDiffusion- Configures a constant secondary dendrite arm spacing used by Scheil with back diffusion. The secondary dendrite arm spacing can either be provided by the user or taken from the defaults. - 
set_cooling_rate(cooling_rate: float = 1.0)¶
- Sets the cooling rate. - Default: 1.0 K/s - An increased value moves the result from equilibrium toward a Scheil-Gulliver calculation. - Parameters
- cooling_rate – The cooling rate [K/s] 
- Returns
- This - ConstantSecondaryDendriteArmSpacingobject
 
 - 
set_fast_diffusing_elements(element_names: List[str])¶
- Sets elements as fast diffusing. This allows redistribution of these elements in both the solid and liquid parts of the alloy. - Default: No fast-diffusing elements. - Parameters
- element_names – The elements 
- Returns
- This - ConstantSecondaryDendriteArmSpacingobject
 
 - 
set_primary_phasename(primary_phase_name: str = 'AUTOMATIC')¶
- Sets the name of the primary phase. - The primary phase is the phase where the back diffusion takes place. If AUTOMATIC is selected, the program tries to find the phase which will give the most back diffusion. That behavior can be overridden by selecting a specific primary phase. - Default: AUTOMATIC - Parameters
- primary_phase_name – The phase name (or AUTOMATIC) 
- Returns
- This - ConstantSecondaryDendriteArmSpacingobject
 
 
- 
- 
class tc_python.scheil.ScheilBackDiffusion¶
- Bases: - tc_python.scheil.ScheilCalculationType- Configuration for back diffusion in the solid primary phase. - Warning - This feature has only effect on systems with diffusion data (typically a mobility database). If used for a system without diffusion data, a normal Scheil calculation is done. - 
classmethod calculate_secondary_dendrite_arm_spacing()¶
- Calculate the secondary dendrite arm spacing based on the following equation: - c * cooling_rate^(-n)with- cand- nbeing provided either by the user or taken from the defaults.- Use the methods provide by - CalculateSecondaryDendriteArmSpacingto configure the parameters.- Returns
 
 - 
classmethod constant_secondary_dendrite_arm_spacing(secondary_dendrite_arm_spacing: float = 5e-05)¶
- Assuming constant secondary dendrite arm spacing, provided either by the user or taken from the defaults. - Default: 50 µm - Parameters
- secondary_dendrite_arm_spacing – The dendrite arm spacing [m] 
- Returns
 
 
- 
classmethod 
- 
class tc_python.scheil.ScheilCalculation(calculator)¶
- Bases: - tc_python.abstract_base.AbstractCalculation- Configuration for a Scheil solidification calculation. - Note - Specify the settings, the calculation is performed with - calculate().- 
calculate(timeout_in_minutes: float = 0.0) → tc_python.scheil.ScheilCalculationResult¶
- Runs the Scheil calculation. - Warning - Scheil calculations do not support the GAS phase being selected, this means the GAS phase must always be deselected in the system if it is present in the database - Parameters
- timeout_in_minutes – Used to prevent the calculation from running longer than what is wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a UnrecoverableCalculationException will be thrown, the current TCPython-block will be unusable and a new TCPython block must be created for further calculations. 
- Returns
- A - ScheilCalculationResultwhich later can be used to get specific values from the simulation.
 
 - 
disable_global_minimization()¶
- Disables global minimization. - Default: Enabled - Note - When enabled, a global minimization test is performed when an equilibrium is reached. This costs more computer time but the calculations are more robust. - Returns
- This - ScheilCalculationobject
 
 - 
enable_global_minimization()¶
- Enables global minimization. - Default: Enabled - Note - When enabled, a global minimization test is performed when an equilibrium is reached. This costs more computer time but the calculations are more robust. - Returns
- This - ScheilCalculationobject
 
 - 
get_system_data() → tc_python.abstract_base.SystemData¶
- Returns the content of the database for the currently loaded system. This can be used to modify the parameters and functions and to change the current system by using - with_system_modifications().- Note - Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file. - Returns
- The system data 
 
 - 
set_composition(component_name: str, value: float)¶
- Sets the composition of a component. The unit for the composition can be changed using - set_composition_unit().- Default: Mole percent ( - CompositionUnit.MOLE_PERCENT)- Parameters
- component_name – The component 
- value – The composition value [composition unit defined for the calculation] 
 
- Returns
- This - ScheilCalculationobject
 
 - 
set_composition_unit(unit_enum: tc_python.utils.CompositionUnit = <CompositionUnit.MOLE_PERCENT: 2>)¶
- Sets the composition unit. - Default: Mole percent ( - CompositionUnit.MOLE_PERCENT).- Parameters
- unit_enum – The new composition unit 
- Returns
- This - ScheilCalculationobject
 
 - 
set_start_temperature(temperature_in_kelvin: float = 2500.0)¶
- Sets the start temperature. - Warning - The start temperature needs to be higher than the liquidus temperature of the alloy. - Default: 2500.0 K - Parameters
- temperature_in_kelvin – The temperature [K] 
- Returns
- This - ScheilCalculationobject
 
 - 
with_calculation_type(scheil_calculation_type: tc_python.scheil.ScheilCalculationType)¶
- Chooses a specific Scheil calculation. ClassicScheil for only setting fast diffusers, ScheilBackDiffusion enables back diffusion in the solid primary phase and optionally fast diffusers in all solid phases, and ScheilSoluteTrapping enables solute trapping in the solid primary phase. :param scheil_type: Type of Scheil calculation, either ScheilClassic, ScheilBackDiffusion or ScheilSoluteTrapping :return: This - ScheilCalculationobject
 - 
with_options(options: tc_python.scheil.ScheilOptions)¶
- Sets the Scheil simulation options. - Parameters
- options – The Scheil simulation options 
- Returns
- This - ScheilCalculationobject
 
 - 
with_system_modifications(system_modifications: tc_python.abstract_base.SystemModifications)¶
- Updates the system of this calculator with the supplied system modification (containing new phase parameters and system functions). - Note - This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as a - *.tdb-file.- Parameters
- system_modifications – The system modification to be performed 
- Returns
- This - ScheilCalculationobject
 
 
- 
- 
class tc_python.scheil.ScheilCalculationResult(result)¶
- Bases: - tc_python.abstract_base.AbstractResult- Result of a Scheil calculation. - 
get_values_grouped_by_quantity_of(x_quantity: Union[tc_python.quantity_factory.ScheilQuantity, str], y_quantity: Union[tc_python.quantity_factory.ScheilQuantity, str], sort_and_merge: bool = True) → Dict[str, tc_python.utils.ResultValueGroup]¶
- Returns x-y-line data grouped by the multiple datasets of the specified quantities (for example in dependency of phases or components). Use - get_values_of()instead if you need no separation. The available quantities can be found in the documentation of the factory class- ScheilQuantity.- Note - The different datasets might contain NaN-values between different subsections and might not be sorted even if the flag `sort_and_merge` has been set (because they might be unsortable due to their nature). - Parameters
- x_quantity – The first Scheil quantity (“x-axis”), Console Mode syntax strings can be used as an alternative (for example “T”) 
- y_quantity – The second Scheil quantity (“y-axis”), Console Mode syntax strings can be used as an alternative (for example “NV”) 
- sort_and_merge – If True, the data is sorted and merged into as few subsections as possible (divided by NaN) 
 
- Returns
- Containing the - ResultValueGroupdataset objects with their quantity labels as keys
 
 - 
get_values_grouped_by_stable_phases_of(x_quantity: Union[tc_python.quantity_factory.ScheilQuantity, str], y_quantity: Union[tc_python.quantity_factory.ScheilQuantity, str], sort_and_merge: bool = True) → Dict[str, tc_python.utils.ResultValueGroup]¶
- Returns x-y-line data grouped by the sets of “stable phases” (for example “LIQUID” or “LIQUID + FCC_A1”). Use - get_values_of()instead if you need no separation. The available quantities can be found in the documentation of the factory class- ScheilQuantity.- Note - The different datasets might contain NaN-values between different subsections and might not be sorted even if the flag `sort_and_merge` has been set (because they might be unsortable due to their nature). - Parameters
- x_quantity – The first Scheil quantity (“x-axis”), Console Mode syntax strings can be used as an alternative (for example “T”) 
- y_quantity – The second Scheil quantity (“y-axis”), Console Mode syntax strings can be used as an alternative (for example “NV”) 
- sort_and_merge – If True, the data will be sorted and merged into as few subsections as possible (divided by NaN) 
 
- Returns
- Containing the - ResultValueGroupdataset objects with their “stable phases” labels as keys
 
 - 
get_values_of(x_quantity: Union[tc_python.quantity_factory.ScheilQuantity, str], y_quantity: Union[tc_python.quantity_factory.ScheilQuantity, str]) → [typing.List[float], typing.List[float]]¶
- Returns sorted x-y-line data without any separation. Use - get_values_grouped_by_quantity_of()or- get_values_grouped_by_stable_phases_of()instead if you need such a separation. The available quantities can be found in the documentation of the factory class- ScheilQuantity.- Note - This method will always return sorted data without any NaN-values. In case of ambiguous quantities (for example: CompositionOfPhaseAsWeightFraction(“FCC_A1”, “All”)) that can give data that is hard to interpret. In such a case you need to choose the quantity in another way or use one of the other methods. - Parameters
- x_quantity – The first Scheil quantity (“x-axis”), Console Mode syntax strings can be used as an alternative (for example “T”) 
- y_quantity – The second Scheil quantity (“y-axis”), Console Mode syntax strings can be used as an alternative (for example “NV”) 
 
- Returns
- A tuple containing the x- and y-data in lists 
 
 - 
save_to_disk(path: str)¶
- Saves the result to disc. Note that a result is a folder, containing potentially many files. The result can later be loaded with - load_result_from_disk()- Parameters
- path – the path to the folder you want the result to be saved in. 
- Returns
- this - ScheilCalculationResultobject
 
 
- 
- 
class tc_python.scheil.ScheilCalculationType¶
- Bases: - object- Specific configuration for the different Scheil calculation types - 
classmethod scheil_back_diffusion()¶
- Configuration for back diffusion in the solid primary phase. - Warning - This feature has only effect on systems with diffusion data (typically a mobility database). If used for a system without diffusion data, a normal Scheil calculation is done. :return: A - ScheilBackDiffusion
 - 
classmethod scheil_classic()¶
- Configuration for Classic Scheil with fast diffusers. :return: A - ScheilClassic
 - 
classmethod scheil_solute_trapping()¶
- Configures the Scheil solute trapping settings. The used solidification speed equation is Scanning speed * cos(angle) with Scanning speed and angle being provided either by the user or taken from the defaults. :return: A - ScheilSoluteTrapping
 
- 
classmethod 
- 
class tc_python.scheil.ScheilClassic¶
- Bases: - tc_python.scheil.ScheilCalculationType- Configuration for Classic Scheil with fast diffusers. - 
set_fast_diffusing_elements(element_names: List[str])¶
- Sets elements as fast diffusing. This allows redistribution of these elements in both the solid and liquid parts of the alloy. - Default: No fast-diffusing elements. - Parameters
- element_names – The elements 
- Returns
- This - ScheilClassicobject
 
 
- 
- 
class tc_python.scheil.ScheilOptions¶
- Bases: - object- Options for the Scheil simulation. - 
calculate_from_gas()¶
- Calculates the evaporation temperature if a gas phase is selected in the system, and then calculates equilibria in the gas+liquid and liquid regions until liquidus temperature is reached. - Default: Calculation starts from liquidus temperature. - Returns
- This - ScheilOptionsobject
 
 - 
calculate_from_liquidus()¶
- Solidification calculation starting from the liquidus temperature. Liquid properties between start temperature and liquidus are not obtainable. - Default: Calculation starts from liquidus temperature. - Returns
- This - ScheilOptionsobject
 
 - 
calculate_from_start_temperature()¶
- Calculation of equilibria from start temperature at 50 K intervals until liquidus temperature is reached. This option makes it possible to obtain properties of the liquid phase before the solidification starts. - Default: Calculation starts from liquidus temperature. - Returns
- This - ScheilOptionsobject
 
 - 
disable_approximate_driving_force_for_metastable_phases()¶
- Disables the approximation of the driving force for metastable phases. - Default: Enabled - Note - When enabled, the metastable phases are included in all iterations. However, these may not have reached their most favorable composition and thus their driving forces may be only approximate. - If it is important that these driving forces are correct, use - disable_approximate_driving_force_for_metastable_phases()to force the calculation to converge for the metastable phases.- Returns
- This - ScheilOptionsobject
 
 - 
disable_control_step_size_during_minimization()¶
- Disables stepsize control during minimization (non-global). - Default: Enabled - Returns
- This - ScheilOptionsobject
 
 - 
disable_equilibrium_solidification_calculation()¶
- Skips the property (one axis) diagram calculation of solidification under equilibrium conditions, before the Scheil solidification calculation starts. - In general it is not necessary to perform this calculation. - Default: Disabled. The equilibrium solidification calculation is skipped. - Returns
- This - ScheilOptionsobject
 
 - 
disable_force_positive_definite_phase_hessian()¶
- Disables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc documentation for “Hessian minimization”. - Default: Enabled - Returns
- This - ScheilOptionsobject
 
 - 
enable_approximate_driving_force_for_metastable_phases()¶
- Enables the approximation of the driving force for metastable phases. - Default: Enabled - Note - When enabled, the metastable phases are included in all iterations. However, these may not have reached their most favorable composition and thus their driving forces may be only approximate. - If it is important that these driving forces are correct, use - disable_approximate_driving_force_for_metastable_phases()to force the calculation to converge for the metastable phases.- Returns
- This - ScheilOptionsobject
 
 - 
enable_control_step_size_during_minimization()¶
- Enables stepsize control during normal minimization (non-global). - Default: Enabled - Returns
- This - ScheilOptionsobject
 
 - 
enable_equilibrium_solidification_calculation()¶
- Performs a property (one axis) diagram calculation of solidification under equilibrium conditions, before the Scheil solidification calculation starts, in the same way as is typically done in graphical and console mode. - In general it is not necessary to perform this calculation. - Default: Disabled. The equilibrium solidification calculation is skipped. - Returns
- This - ScheilOptionsobject
 
 - 
enable_force_positive_definite_phase_hessian()¶
- Enables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc documentation for “Hessian minimization”. - Default: Enabled - Returns
- This - ScheilOptionsobject
 
 - 
set_gas_phase(phase_name: str = 'GAS')¶
- Sets the phase used as the gas phase. - Default: The phase “GAS”. - Parameters
- phase_name – The phase name 
- Returns
- This - ScheilOptionsobject
 
 - 
set_global_minimization_max_grid_points(max_grid_points: int = 2000)¶
- Sets the maximum number of grid points in global minimization. ** Only applicable if global minimization is actually used**. - Default: 2000 points - Parameters
- max_grid_points – The maximum number of grid points 
- Returns
- This - ScheilOptionsobject
 
 - 
set_global_minimization_test_interval(global_test_interval: int = 10)¶
- Sets the interval for the global test. - Default: 10 - Parameters
- global_test_interval – The global test interval 
- Returns
- This - ScheilOptionsobject
 
 - 
set_liquid_phase(phase_name: str = 'LIQUID')¶
- Sets the phase used as the liquid phase. - Default: The phase “LIQUID”. - Parameters
- phase_name – The phase name 
- Returns
- This - ScheilOptionsobject
 
 - 
set_max_no_of_iterations(max_no_of_iterations: int = 500)¶
- Set the maximum number of iterations. - Default: max. 500 iterations - Note - As some models give computation times of more than 1 CPU second/iteration, this number is also used to check the CPU time and the calculation stops if 500 CPU seconds/iterations are used. - Parameters
- max_no_of_iterations – The max. number of iterations 
- Returns
- This - ScheilOptionsobject
 
 - 
set_required_accuracy(accuracy: float = 1e-06)¶
- Sets the required relative accuracy. - Default: 1.0E-6 - Note - This is a relative accuracy, and the program requires that the relative difference in each variable must be lower than this value before it has converged. A larger value normally means fewer iterations but less accurate solutions. The value should be at least one order of magnitude larger than the machine precision. - Parameters
- accuracy – The required relative accuracy 
- Returns
- This - ScheilOptionsobject
 
 - 
set_smallest_fraction(smallest_fraction: float = 1e-12)¶
- Sets the smallest fraction for constituents that are unstable. - It is normally only in the gas phase that you can find such low fractions. - The default value for the smallest site-fractions is 1E-12 for all phases except for IDEAL phase with one sublattice site (such as the GAS mixture phase in many databases) for which the default value is always as 1E-30. - Parameters
- smallest_fraction – The smallest fraction for constituents that are unstable 
- Returns
- This - ScheilOptionsobject
 
 - 
set_temperature_step(temperature_step_in_kelvin: float = 1.0)¶
- Sets the temperature step. Decreasing the temperature step increases the accuracy, but the default value is usually adequate. - Default step: 1.0 K - Parameters
- temperature_step_in_kelvin – The temperature step [K] 
- Returns
- This - ScheilOptionsobject
 
 - 
terminate_on_fraction_of_liquid_phase(fraction_to_terminate_at: float = 0.01)¶
- Sets the termination condition to a specified remaining fraction of liquid phase. - Default: Terminates at 0.01 fraction of liquid phase. - Note - Either the termination criterion is set to a temperature or fraction of liquid limit, both together are not possible. - Parameters
- fraction_to_terminate_at – the termination fraction of liquid phase (value between 0 and 1) 
- Returns
- This - ScheilOptionsobject
 
 - 
terminate_on_temperature(temperature_in_kelvin: float)¶
- Sets the termination condition to a specified temperature. - Default: Terminates at 0.01 fraction of liquid phase, i.e. not at a specified temperature. - Note - Either the termination criterion is set to a temperature or fraction of liquid limit, both together are not possible. - Parameters
- temperature_in_kelvin – the termination temperature [K] 
- Returns
- This - ScheilOptionsobject
 
 
- 
- 
class tc_python.scheil.ScheilSoluteTrapping¶
- Bases: - tc_python.scheil.ScheilCalculationType- Configures the Scheil solute trapping settings. The used solidification speed equation is Scanning speed * cos(angle) with Scanning speed and angle being provided either by the user or taken from the defaults. - 
set_angle(alpha: float = 45.0)¶
- Sets the transformation angle alpha between the solid/liquid boundary and laser scanning direction. - Default: 45.0 - Parameters
- alpha – The transformation angle [degree] 
- Returns
- This - ScheilSoluteTrappingobject
 
 - 
set_primary_phasename(primary_phase_name: str = 'AUTOMATIC')¶
- Sets the name of the primary phase. - The primary phase is the phase where solute trapping takes place. A necessary condition for this phase is that the phase definition contains all of the elements that are chosen in the system. When AUTOMATIC is selected, the program tries to find a suitable primary phase that fills this condition. - Default: AUTOMATIC - Parameters
- primary_phase_name – The phase name (or AUTOMATIC) 
- Returns
- This - ScheilSoluteTrappingobject
 
 - 
set_scanning_speed(scanning_speed: float = 1.0)¶
- Sets the scanning speed. - Default: 1 m/s - Parameters
- scanning_speed – The scaling factor [m/s] 
- Returns
- This - ScheilSoluteTrappingobject
 
 
-