

DICTRA On-line Training

Åke Jansson, John Ågren, Carl-Magnus Lancelot, André Schneider, Johan Bratberg,

Day 3: 18 April 2024

www.thermocalc.com

Schedule

Diffusion Module (DICTRA)

Day 3

9:00	Home assignment 2
9:10	Example – Dissolution of cementite particles
	(moving phase boundary calculation)
10:10	Console mode and macro files.
10:30	Q&A
10:45	Example – Gradient sintering in Cemented carbide
11:30	Trouble shooting
11:45	Q&A
12:00	End

Today's download:

https://download.thermocalc.com/courses/DICTRA/DICT-Day3/

Home assignment 2

Home assignment 2: Solidification & Homogenisation

CrNi-steel: Fe(bal.) – 1.9 Ni – 0.95 Cr – 0.65 Mn – 0.4 C (wt-%)

Start with a Classic Scheil simulation, with carbon as a fast diffusing element.

Then use the result of the Scheil as start composition in the homogenisation simulation. Use default settings.

Secondary dendrite arm spacing: 200 $\mu m.$ Temperature 1120 °C. Time for homogenisation: 72 hours.

Task: Check how the concentration profiles for Ni and Cr change over time.

Compare with exp. data: Fuchs_1120.exp

Home assignment 2: Solidification & Homogenisation

CrNi-steel: Fe(bal.) – 1.9 Ni – 0.95 Cr – 0.65 Mn – 0.4 C (wt-%)

Considerations:

To export the scheil concentration profile to a DICTRA simulation, the Homogenisation template must be used.

Set a Classic Scheil simulation with C as fast diffuser. However, the calculated carbon profile will not be used.

In the Diffusion Calculator, use these settings. ~

0,10			, ↓
Axis variable:	Time	✓ Hours ✓	J.
Axis type:	Linear V		
Limits:	0.0 to 1.0	step 0.1	Automatic scaling
Axis variable:	Composition	~ All ~	Mass percent \sim
Axis variable:	Composition	→ Ali →	Mass percent
Axis type.	Linear ·		_
Limits:	0.0 to 4	step 0.5	Automatic scaling

Name	Design1							
Name:	Regioni							
Half seco	ondary arm spacing	2.0E-4		m 50	points and type	Linear	~	
Composi	tion profiles: Aver	age over	all solidified	phases 🗸	/			
Phases:	All solidified phase	< V						
ala ail ann		6		a milable 1	Teo - II.a.,		liff	5
icheil segi	regation profiles for	fast diffu	isers are not	available. 1	The alloy compositi	on for fast d	liffusers that is d	efine
icheil seg Distanc	regation profiles for e Mn	fast diffu Ni	isers are not Cr	available. T C	The alloy compositi	on for fast d	liffusers that is d	efine
icheil segi Distanc 0.000000	regation profiles for e Mn 0.497700 1.4	fast diffu Ni 678352	Cr 0.848661	available. T C 0.40000	The alloy compositi	on for fast d	liffusers that is do	efine

There are two TCU files for HA2 included in today's download, one of them with calculated results.

Home assignment 2: Solidification & Homogenisation

CrNi-steel: Fe(bal.) – 1.9 Ni – 0.95 Cr – 0.65 Mn – 0.4 C (wt-%)

2023.10.10.14.37.19 Diffusion Calculator 1: TCFE13, MOBFE8 : Fe, Mn, Ni, Cr, C W(Mn) = 0.65, W(Ni) = 1.9, W(Cr) = 0.95, W(C) = 0.4 Mass percent Mn = 0.65, Mass percent Ni = 1.9, Mass percent Cr = 0.95

Moving Phase Boundary – Cementite dissolution

Moving phase boundary simulation

Solve diffusion equation in each phase

Calculate displacement of phase boundary

Thermo-Calc is used to find tie-lines

Moving Phase Boundary

Moving phase boundary simulations may be set up in DICTRA in two different ways:

1) Introducing two or more adjacent regions containing different phases

2) Entering an inactive phase (formed when thermodynamically stable)

Cementite dissolution in an Fe–Cr-C alloy

Dissolution of cementite at 910°C (1183K)

x(Cr)= 0.0206, x(C)=0.0391, bal. Fe.

Initial particle radius is estimated to 0.5255 μm. Heat treatment at 735°C.

Liu et al, Metall Trans A 22A(1991)1745

Cementite dissolution in an Fe–Cr-C alloy 910°C x(Cr)=0.0206, x(C)=0.0391, bal. Fe.

Thermo-Calc

Software

Cementite dissolution in an Fe–Cr-C alloy

The volume fraction of cementite and the composition in the cementite, is calculated at the normalizing temperature 735°C (1008 K).

The size of the *y* region is calculated from:

$$\frac{R_{\text{cementite}}^3}{R_{\text{tot}}^3} = \frac{V_{\text{cementite}}}{V_{\text{tot}}} = V_{\text{cementite}}^f$$

$$\implies \qquad R_{\gamma} = R_{\text{tot}} - R_{\text{cementite}} = \frac{R_{\text{cementite}}}{\sqrt[3]{V_{\text{cementite}}^f}} - R_{\text{cementite}}$$

$$\left(V_{\text{cementite}}^{\text{f}} = \frac{n(\text{cem, Cr}) + n(\text{cem, Fe})}{n(\text{Cr}) + n(\text{Fe})} \right)$$

Cementite dissolution in an Fe–Cr-C alloy

The volume fraction of cementite and the composition in the cementite, is calculated at the normalizing temperature 735°C (1008 K). Here is how to set it up in the Equilibrium Calculator's Functions page:

	ns				20-70						
🤤 Q1 =	Amount of com	ponent	-	No normalization	-	Fe	•	Mole			
🥥 Q2 =	Amount of com	ponent	-	No normalization	•	Cr	•	Mole			
Q3 =	Amount of com	ponent in phase	-	No normalization	-	Fe	•	CEMENTITE	-	Mole	-
) 🥥 Q4 =	Amount of com	ponent in phase	-	No normalization	-	Cr	•	CEMENTITE	-	Mole	-
unction Definitio	ons										
🔾 🗹 🗹	1	= Q1+Q2									
		= Q3+Q4									
INCEM											
	Λ	= NCEM/NTOT									

Results – cementite dissolution

Console Mode

Console mode – DICTRA monitor

🛦 File Tools Window Help	Thermo-Calc 2023b - HA2_Scheil-and-Homogenisation.tcu		- 🗆 X
Console		₫ Ŧ	Console Results 🗇 👎
🖸 Console 1 🕀 🔲 🖯			🗠 Results Console 1
Local contact Akes new laptop	Ake Jansson		Plot 1 🕀 🔲 🖯
SYS:go dict			1.0
NO TIME STEP DEFINED			
DIC>?			
ADVANCED_HOMOGENIZATION_OPTIO	LIST_MOBILITY_ESTIMATES		
AMEND_CELL_DISTRIBUTION	LIST_PROFILES		
AMEND_MOBILITY_DATA	LIST_REGION		
BACK	LIST_TIMESTEPS		0.8 -
CHECK_DIFFUSION_MATRIX	MACRO_FILE_OPEN		
COARSENING_MODEL	PARA_EQUILIBRIUM_MODEL		
CREATE NEW CELL	POLY_COMMAND		
DEBUGGING	POST_PROCESSOR		
DELETE REGION	READ WORKSPACES		2.22
ENTER_COMPOSITIONS	SAVE WORKSPACES		0.6 -
ENTER ENHANCEMENT FACTOR	SELECT CELL		
ENTER GEOMETRICAL EXPONENT	SELECT TIMESTEP		
ENTER GRID COORDINATES	SET ACCURACY		
ENTER HEAT TRANSFER PARAMETER	SET ALL START VALUES		
ENTER_HOMOGENIZATION_FUNCTION	SET_CONDITION		
ENTER_LABYRINTH_FUNCTION	SET_FIRST_INTERFACE		0.4.7
ENTER MOBILITY DATA	SET_INITIAL_TEMPERATURE		
ENTER MOBILITY ESTIMATE	SET INTERACTIVE		
ENTER PHASE IN REGION	SET LOG LEVEL		
ENTER REGION	SET_NUMERICAL_LIMITS		
EXIT	SET REFERENCE STATE		0.2
GB_MODEL	SET SIMULATION CONDITION		0.2
GOTO MODULE	SET SIMULATION TIME		
HELP	SET_SURFACE_TENSION		
HOMOGENIZATION_MODEL	SIMULATE_REACTION		
INPUT_SCHEIL_PROFILE	STORE_HOMOGENIZATION_DATA		
INTERFACE_SURFACE_TENSION	SWITCH_MODEL		0.0
LIST_CONDITIONS	USE_INTERPOLATION_FOR_D		▲ 0.0 0.2 0.4 0.6 0.8 1.0
LIST_MOBILITY_DATA	UTILITIES_HOMOGENIZATION		
DIC>			
Event Log			

Typical calculation scheme - Console

Define and get thermodynamic and kinetic data Set global conditions (usually only T) Enter region(s) Enter grid(s) and size in region(s) Enter phase(s) in region(s) Enter composition(s) for the phases Enter geometrical factor (optional) (Set boundary conditions) Set simulation time Start simulation Move to Plot module (the Post processor) Set diagram axes Set plot condition (often time or distance) Plot diagram

DEF-SYS; GET; APPEND ↑SET-COND GLOB T..... **ENT-REG ENT-GRID** ENT-PH **ENT-COMP** (ENT-GEO) (SET-CO BOU) SET-SIM-TIME SIM **VPOST** S-D-A S-P-C **PLOT**

Console mode Macro files

Text files with Console mode commands

□ File extension: .TCM or .DCM

□ Can easily be produced from log-files (SET-LOG command)

Can be rewritten in a text editor, e.g. NotePad

LOG file to

@@ Log file generated 2020-10-13 @@

go data

switch tcni11

def-elements ni cr co al ti

get-data

go poly

set-cond t=1000 n=1 p=1e5 w(co)=0.20 set-cond w(cr)=0.195 w(al)=0.4E-2 w(ti)=0.021 s-a-v 1 t 773.15 1773.15 10

step

NORMAL

post

set-diag-ax x t-c

set-diag-ax y vpv(*),,

plot,,

exit

Macro file

set-echo
go data switch tcni11 def-elements ni cr co al ti get-data go poly
set-cond t=1000 n=1 p=1e5 w(co)=0.20 set-cond w(cr)=0.195 w(al)=0.4E-2 w(ti)=0.022 s-a-v 1 t 773.15 1773.15 10

step NORMAL post set-diag-ax x t-c set-diag-ax y vpv(*),, plot,,

set-interact

DICTRA Macro file

go data sw tcfe13 def-sys fe cr ni rej-ph * rest-ph bcc fcc get	ent-ph act fecrni sph bcc
app mobfe8 def-sys fe cr ni rej-ph * rest-ph bcc fcc get	ent-comp fecrni fcc#1 fe w-p cr fup 24 3+15 7*HS(x-0.0015)
go dict	ni fun 6 9+22 5*HS(x-0 0015)
set-cond glob T 0 1373.15; * N	ont comp
ent-region fecrni	fecrni bcc
ent-grid fecrni 3e-3 double 60 0.85 1.15	y set-sim-time 3.6e5 yes 3.6e4 1e-7 1e-7
ent-phase act	homogen yes yes ent-hom 1
tecrni matrix fcc#1	save FECRNI y
	set-inter

DICTRA Macro file

The macro file from previous slide is included in the download as *fecrni_hom_setup.DCM*

It is the same Fe-Cr-Ni diffusion couple simulation that we performed yesterday.

Run it by drag-and-drop to an open console window or by simply double-clicking the DCM file.

Q & A

Example – Gradient Sintering of Cemented Carbide

Gradient sintering of cemented carbide

- A process used by the cemented carbide industry to increase surface toughness away from the cutting edge and increase hardness at the edge. The latter effect is due to geometry reasons and not considered further here.
- Cemented carbides are composite materials made up of hard refractory phases (mainly WC + other carbides/carbonitrides) in a minority Co-base matrix phase.
- Gradient sintering typically depend on the high nitrogen affinity of titanium (though other elements are possible).
- During vacuum sintering the cemented carbide is de-nitrided resulting in an inward diffusion of titanium and dissolution of the carbonitride phase in a surface zone.

Image from: Ekroth et al. Acta Mater 48(2000)2177

Gradient sintering of cemented carbide

- Use TCFE13, works for these systems.
- Sintering temperature 1450 °C.
- Matrix phase: LIQUID.
- Secondary phases: WC (=MC_SHP), TiCN (FCC_A1#2).
- Alloy composition:

6.85 Co – 5.8 Ti – 6.35 C – 0.38 N – bal. W (wt-%)

- Boundary condition on activity N, ACR(N)=1e-5.
- Run simulation for two hours.

Gradient sintering of cemented carbide

Results (console mode simulation)

Trouble Shooting

Troubleshooting in DICTRA

What to do when things go wrong.

- 1. Check that the settings are what you want.
- 2. Simplify, e.g. use fewer elements.
- 3. Note that "ERROR 1234 in DXXYYZ" and similar are not considered errors (but rather information messages) as long as the simulation continues to run.

Options tab – this is where settings are changed in Graphical mode

Configuration							<u>n</u> 1
		e c)iffusion Calcula	tor 1			
Conditions Options							
Simulation Conditions						1	
Default solver:			Automatic	-			
Time integration method:	l.		Trapezoidal	-			
Save results to file:			Yes	•			
Use forced starting value	s in equilibrium c	alculations:	No	-			
Default driving force for	phases allowed to	form at interfaces:	1.0E-5]			
Timestep Control							
Max relative error:	0.05	Max absolute error:	1.0E-5				
Timestep: Initial	278.713631256	Smallest allowed:	1.0E-7	Max	10.0	% of simulation time	
Factor specifying the ma	ximum increase <mark>i</mark> r	n the timestep taken f	rom one timest	ep to anoth	er: 2.0		
The timestep is to be con	trolled by the pha	se interface displace	ment during the	simulation:	No	•	
Classic Model Specific							
Use the activity 💌 d	of a component in	order to find the corre	ect <mark>tieline at</mark> the	phase inter	face		
Required accuracy durin	ng the solution of t	he flux balance equa	tions: 1 0E-16	-			
Homograpization Model So	onific						
Homogenization model 3p	Lasa						
Homogenization function	Rule of mixture	es (upper Wiener bou	nd)		1 A		
Use global minimization:							
Interpolation Scheme							
Use interpolation sch	eme:						
Eogarithmic 💌	discretization with	10000 ste	ps in each dime	nsion			
Memory to use: 1000	.o. Mega	byte 🔻					
		an bi					

These normally work well.

Some sources of problems can be:

Unsuitable grid point spacing (use 1e-7 to 1e-8 m at boundary conditions or steep gradients)

Problems with mobility data

"Stiff-problems", large differences in mobilities of different elements

Problems with mobility data:

Perform a step calculation in one of the changing compositons and plot the diffusivities (e.g. DC(phase,x,y,z)) as a function of concentration to check if these vary in an extreme way (i.e. many orders of magnitude).

We can see how using the included CALC_NiCrAl-Step.tcu

Perform a step calculation in one of the changing compositions and plot the diffusivities (e.g. DC(phase,x,y,z)) as a function of concentration.

"Stiff problems"

Show up as fluctuations (wiggles) in the concentration profiles.

Suggestion: Use implicit time integration of the diffusion equations, i.e. set the time integration method to Euler Backwards.

In Console mode: SET_SIMULATION_CONDITION ; DEGREE OF IMPLICITY WHEN INTEGRATING PDEs = 1

Moving Phase Boundary Simulations

The same errors as for one phase simulations may occur, and can be handled in the same way. Additional sources of problems for M-P-B can be:

Problems calculating phase equilibria at the phase interface

Problems when having a varying temperature

Elements with zero solubility in a region or phase.

Moving Phase Boundary Simulations

Problems calculating phase equilibria at the phase interface Show up as error messages from POLY-3.

Suggestions:

1. Try changing between activities and potentials for specifying the tie-line.

or

2. Try the homogenization model. If the simulation starts and runs nicely you can often switch back to Classic model.

Problems with varying temperatures.

First check that your set temperature curve is correct.

Limit the maximum timestep in the calculation by:

- 1. Decreasing the max timestep from 10% to a smaller value.
- 2. Set the time step to be controlled by the movement of the phase interface. This is standard for any solidification simulation.

Homogenization Model

Make sure that the grid point spacing is not too tight; a very dense grid can result in very short time-steps.

For complex systems it may be necessary to use forced starting values in equilibrium calculations or turn on the global minimization

Changing settings in Graphical mode

			🖞 D	iffusion Calcula	tor 1				
Conditions	Options								
Simulation C	conditions								1
Default sol	ver:			Automatic	-				
Time integ	ation method	:		Trapezoidal	-				
Save result	ts to file:			Yes	-				
Use forced	starting value	es in equilibrium ca	alculations:	No	-				
Default driv	ing force for	phases allowed to	form at interfaces:	1.0E-5]				
Timestep Co	introl								
Max relativ	e error:	0.05	Max absolute error:	1.0E-5					
Timestep:	Initial	278.713631256	Smallest allowed:	1.0E-7	Max	10.0		% of simulati	on time
Factor sne	cifving the ma	vimum increase in	the timesten taken f	rom one timest	en to and	ther 20			
- uotor opo									
		Trollog by the near							
The unlesu	ep is to be cor	itrolled by the phas	se interface arophacer	ment during the	Sinuau		240		
Classic Mode	el Specific	itrolled by the phas		ment during the	Sinuau				
Classic Mode	ep is to be con	of a component in o	order to find the corre	ect tieline at the	phase in	terface			
Classic Mode	el Specific ctivity	of a component in o	order to find the corre	ect tieline at the	phase in	terface			
Classic Mode Use the a Required a	el Specific activity 💌 d accuracy duri	of a component in o	order to find the corre	ect tieline at the	phase in	terface			
Classic Mode Use the a Required a Homogeniza	el Specific ctivity 💌 d accuracy duri	ntrolled by the phases of a component in our of the solution o	order to find the corre	ect tieline at the	phase in	terface			
Classic Mode Use the a Required a Homogeniza Homogeniza	el Specific activity v a accuracy durin ation Model Sp ration function	of a component in on ng the solution of t ecific : Rule of mixture	order to find the corre he flux balance equat	ect tieline at the tions: 1.0E-16	phase in	terface			
Classic Mode Use the a Required a Homogeniza Use global	el Specific activity 💌 a accuracy duri ation Model Sp ation function minimization:	of a component in on ng the solution of t ecific : Rule of mixture	order to find the corre he flux balance equat	ect tieline at the tions: <u>1.0E-16</u>	phase in	terface			
Classic Mode Use the a Required a Homogeniza Use global	el Specific activity v a accuracy duri ation Model Sp ation function minimization:	of a component in on ing the solution of t ecific : Rule of mixture	order to find the corre he flux balance equat	ect tieline at the tions: 1.0E-16	phase in	terface			
Classic Mode Use the a Required a Homogenize Use global	el Specific activity v a accuracy durin ation Model Sp ation function minimization:	of a component in on Ing the solution of the ecific Ing the of mixture	order to find the corre he flux balance equat	ect tieline at the tions: 1.0E-16	phase in	terface			
Classic Mode Use the a Required a Homogeniza Use global Use inter	ep is to be con el Specific activity accuracy duri ation Model Sp ration function minimization: ion Scheme erpolation sch	of a component in on a component in on a the solution of the construction of the construc	order to find the corre he flux balance equat	ect tieline at the tions: 1.0E-16	phase in	terface			
Classic Mode Use the a Required a Homogeniza Use global Interpolati Use inter	el Specific activity v a accuracy duri ation Model Sp ation function minimization: ion Scheme erpolation sch	of a component in on ing the solution of the ecific : Rule of mixture eme: discretization with	order to find the corre he flux balance equat es (upper Wiener boin	ps in each dime	phase in	terface			

1.Link to course evaluation:

https://www.surveymonkey.com/r/BW87SQY

2. We will send a certificate of course completion electronically just after all three online courses are finished.

Send your name and affiliation to <u>ake@thermocalc.se</u> if you are uncertain if we have it correctly.

Q & A