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1 Introduction to Diffusion Simulations

1.1 About This Tutorial Guide

This guide is an introduction to some of the concepts and practices used when you set up a
diffusion simulation using the Diffusion Module (DICTRA).

The purpose of this tutorial is to make the engineer aware about the type of material issues
that are related to diffusion and demonstrate how to solve them. Some problems may be
tackled by very simple computations whereas others require more heavy computations based
on numerical approaches. Most of the examples concern metallic systems such as steels,
super alloys and light metals, but the principles can be applied to many other classes of
materials, e.g. ceramics and polymers, provided that appropriate databases are available.

The guide assumes some familiarity with using the Graphical Mode interface of the Thermo-
Calc software. However, if you are not familiar you can use the available help and
documentation to supplement this guide. See "Help Resources" on the next page.

Except for one example at the beginning that includes details about how to recreate the
simulation in both Graphical Mode and Console Mode, the exercises in this guide use the
Graphical Mode interface. A brief comparison of these modes is included in "Graphical Mode
vs Console Mode" on page 7. It is also useful to read "An Important Note About Terminology"
on page 6.

The training material itself is available at two levels: basic and advanced. At the basic level it
is assumed that you have a secondary school level (e.g. high school) understanding of
mathematics, physics and chemistry. The advanced level requires a university education,
often at the PhD level or higher.

Convention Definition

Task The task to complete for the exercise.

Note
The information can be of use to you. It is recommended
that you read the text or follow the link to more
information.
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Convention Definition

Tip
This is general information that can be of use but is not
required knowledge.

Examples Go to the example in this guide to learn more.

1.2 Help Resources

1.2.1 'Online' Help: No Internet Required

To access online help in a browser, open Thermo-Calc and press <F1> on the keyboard, or
select Help → Online Help.

The content opens in a browser but uses local content so you don't need an Internet
connection except for links to external websites.

Context Help (Graphical Mode Only)

When you are in Graphical Mode, you can access feature help (also called topic-
sensitive or context help) for the activity nodes in the tree.

1. In the Project window, click a node. For example, System Definer.

2. In the lower left corner of the Configuration window, click the help button .

3. The Help window opens to the relevant topic.

The window that opens has the same content as the help you access in the browser. There
are these extra navigation buttons in this view.

l Use the buttons on the bottom of the window, , to
navigate Back and Forward (these are only active once you have started using the help
to load pages and create a history), to Close the window, and Reload the original con-
tent.
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1.2.2 Training and Video Tutorials

Some of the Graphical Mode examples included with the Thermo-Calc installation have video
tutorials available both on our website or our YouTube channel.

You can go to the video tutorials when in Thermo-Calc: Help → Video Tutorials.

1.3 An Important Note About Terminology

DICTRA is an acronym for DIffusion-Controlled TRAnsformations. The software of the same
name has been included in the suite of Thermo-Calc products for many years. When you are
working in the original mode, called Console Mode, the terminology reflects this historical
connection as does the literature that cites the use of DICTRA.

With the introduction of the Graphical Mode version of DICTRA, and to better describe what
the add-on module does, the product name was changed to the Diffusion Module (DICTRA).
However, this means some of the terminology between the modes cannot be consistent even
though the theory and concept behind the software is fundamentally the same. For example,
in Graphical Mode the term "DICTRA" is not used when describing the Diffusion Calculator
node.

In Console Mode there is also some terminology to be aware of as there are two submodules
within the program:

l DICTRA_MONITOR: A module for running simulations of diffusion controlled trans-
formations, and

l DIC_PARROT: A module to assess experimental data and uses this data to optimize
mobilities.

Except for the first example, this training material uses Graphical Mode.
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1.4 Graphical Mode vs Console Mode

There are two interfaces available in Thermo-Calc: Graphical Mode with a graphical user
interface (GUI) and Console Mode, which uses a command line interface. Thermo-Calc and
the Diffusion Module (DICTRA) are available in both modes.

In Graphical Mode calculations are set up, carried out, and visualized as part of a project.
The steps in the project are performed with activities. There are templates and a Wizard
available to guide you through the process of defining the project.

In Console Mode you work withmodules, which are managed using commands typed at a
prompt. Some modules, called response-driven modules, ask you a series of questions that
typically take you through the process of defining your system, setting calculation conditions,
performing calculations and plotting the results.

Switching Between Modes

The first time you open Thermo-Calc, it defaults to Graphical Mode. For any future instance
it defaults to the last mode used.

Along the top of the GUI is the Graphical Mode Toolbar where you switch between modes. In
Console Mode, except for the Switch to Graphical Mode button, the toolbar is not used.

File Extensions

The file extensions are different based on the mode you are in (Graphical vs. Console). In
Console Mode the extensions are also based on whether you are working with Thermo-Calc
or the Diffusion Module.

l In Graphical Mode, all the project files have the extension *.tcu.

l In Console Mode, the DIffusion Module (DICTRA) the file extension is *.DCM. In addi-
tion to macro files in Console Mode the are also Log files andWorkspace files, which
also differ.

Can I work with both modes at the same time?

The two modes can be run simultaneously, but there is no communication between them.
What you do in Graphical Mode does not affect the state of the Console Mode session and
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vice versa.

1.5 List of Examples

1.5.1 Diffusion Through a TubeWall

Theory

"Fick’s Law and the Diffusion Coefficient" on page 13

l "Example: Diffusion Through a Tube Wall" on page 15

l "Advanced Example: Diffusion Through a Tube Wall" on page 16

Practical Examples

"Stationary Diffusion Through a Tube Wall " on page 31

l "Graphical Mode - Diffusion Through a Tube Wall " on page 34

l "Console Mode Commands - Diffusion Through a Tube Wall" on page 40

l "Example: Carbon Diffusion in a Ni-Plated Steel" on page 55

1.5.2 Theory - Darken's Experiment

l "Example: Darken’s Experiment " on page 51

1.5.3 Theory - Fick's Second Law

"Fick’s Second Law: The Calculation of Concentration Profiles" on page 18

l "Advanced Example: Fick’s Second Law" on page 18

1.5.4 Theory - Error Function

"Analytical Solutions" on page 20

l "Example: Carburization of Steel" on page 20
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1.5.5 Theory - Sinusoidal Solution

"Analytical Solutions" on page 20

l "Example: Homogenization of an Alloy" on page 21

1.5.6 Theory - Materials with Many Components

"Materials with Many Components" on page 22

l "Example: Diffusion in a High-Entropy Alloy" on page 24

l "Advanced Example: Diffusion in a High-Entropy Alloy" on page 24

1.5.7 Two-Phase Diffusion Problems in Binary Alloys

l "Example: Diffusion in a Joint Between Dissimilar Materials" on page 45

l "Example: Fe/Fe-10mass% Ni Diffusion Couple at 850 °C" on page 72

l "Example: Ferrite Formation and Dissolution in an Fe-0.2C Alloy" on page 77

l " Isothermal Reaction" on page 77

l "Reaction During Cooling and Isothermal Holding" on page 81

l "Austenite Formation During Heating" on page 84

l "Example: Austenite Formation in a Normalized Steel" on page 87

1.5.8 Two-Phase Diffusion Problems in Multicomponent Alloys

l "Example: Isothermal Formation of Ferrite from Austenite in Steel Fe-1Mn-0.2C" on
page 94

l "Example: Ferrite Formation During Normalizing of Steel Fe-1Mn-0.2C" on page 100

l "Example: Austenite Formation After Normalizing of Steel Fe-1Mn-0.2C" on page 105

1.5.9 Diffusion in Dispersed Structures

l "Example: Internal Carburization of a Ni-Cr Alloy Using Homogenization " on page 108

l "Example: Internal Nitriding an Fe-Ni-Cr Alloy Using Homogenization" on page 110

l "Example: Carbon Transfer in a Steel Composite: A Full Scale Industrial Problem" on
page 112
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2 Diffusion Theory

2.1 What is Diffusion and When is it Important?

A material is built up by atoms. In some materials, particularly polymers and biological
substances the atoms are organized in molecules and it is more convenient to regard the
molecules as building blocks. We will discuss the latter type of molecular materials in a
special section but here simply talk about atoms as building blocks although the principles
described is also applicable to molecules.

The thermal energy causes the atoms to move. This is called thermal motion and the higher
the temperature, the more extensive the motion. In a solid material thermal motion is
mainly as vibrations. However, for molten material the atoms can move over longer
distances. If the material, solid or molten, is in a state of equilibrium nothing happens on a
more macroscopic level. At equilibrium the atomic motion is random. An atom is then as
likely to move in one direction as in the opposite direction and there is no net transport of
atoms.

However, often the material is not in equilibrium and the motion is not completely random,
i.e. there is a bias in some direction. For example, if there is a difference in composition the
average motion of the atoms are in the direction that causes the concentration difference to
level out. This motion of atoms is called atomic diffusion or simply diffusion.

It is therefore obvious that diffusion occurs when there are concentration variations in the
material and particularly at high temperatures. However, there is one important exception
that must be kept in mind— often a material consists of different phases. A phase is a part of
a material where the atoms are arranged in a certain manner, which is usually called the
crystal structure of the phase. The figures below show examples of two arrangements that
are common in metals, body centered cubic (bcc) and face centered cubic (fcc). In bcc atoms
are in the corners of the unit cell as well as in the center. In fcc they are in the corners and
on the center of each face of the cube. Each such cube is then repeated to build up a crystal.
In a liquid phase the atoms are usually arranged more or less at random.
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Figure 2-1: Body centered cubic arrangement (bcc).

Figure 2-2: Face centered cubic arrangement (fcc).

If two phases are in equilibrium they often have different compositions but as long as
equilibrium is established there will be no diffusion across the interface between them. If
they are not in equilibrium there is diffusion and one phase will grow and consume the other.
In fact the growth rate may then be calculated by solving a diffusion problem.

A common situation of practical importance is a joint between two dissimilar materials with
different composition. This may cause problems at higher temperatures, for example during
welding or usage of the material, or if there is a transport of atoms from one side to the
other. Another situation is diffusion through the wall of a container, where there are
different compositions on each side of the wall. This is an important problem in packing of
food where oxygen molecules may be small enough to diffuse through the plastic wall and
oxidize the food in the container.

Different atoms have different mobility and problems caused by diffusion are particularly
important for fast diffusing elements, such as carbon and nitrogen in metals. It should also be
emphasized that diffusion is not always problematic but in processing can often provide an
opportunity to improve the properties of a material.

In summary diffusion is important when:
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l there are concentration differences within the same phase,

l a material is not in equilibrium, and

l temperature is high and diffusion becomes rapid.

2.2 Fick’s Law and the Diffusion Coefficient

Diffusion is described mathematically by Fick’s law. For the one-dimensional situation with
diffusion along an x-axis it reads

Eq. 2-1

The diffusional transport of the species is represented by its flux , i.e. the amount of

that crosses a unit area perpendicular to the direction of diffusion per time unit. If the

amount of atoms is counted in moles (1 mole ≈ 6,022 1023 atoms) the dimension of the flux
in SI units is mol m-2 s-1. is the concentration of , i.e. the amount of per unit volume, i.e.
the number of moles per unit volume. The quantity is called the concentration

gradient and measures how strongly the concentration varies in the x direction. is the

diffusion coefficient of and expresses how mobile is. A high value means that moves
easily and a low value that it is sluggish. In SI units the diffusivity has the dimension m2s-1.
The diffusion coefficient has a strong temperature dependence and it usually varies with
composition as well. The temperature dependence is expressed by the Arrhenius equation:

Eq. 2-2

where is the so-called activation energy and expressed in J mol-1 and the frequency

factor with the same dimension as the diffusion coefficient. is the gas constant
and is the temperature in Kelvin ( ). In scientific calculations the

temperature is usually expressed in and the relation to the Celsius temperature scale is

Eq. 2-3
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In steels carbon (C) diffuses rapidly and at 900 °C its diffusion coefficient is . As
a comparison manganese (Mn) is slow diffusing with a diffusion coefficient at

the same temperature. Thus Mn diffuses 200 000 times slower than C if the two elements
were exposed for the same concentration gradient.

In chemistry and metallurgy it is common to express the composition in terms of the mole
fraction. The mole fraction is related to the concentration of by means of

Eq. 2-4

is the molar volume, i.e. the volume of one mole of atoms. For example, for pure iron at
room temperature and atmospheric pressure it is . In practical

calculations one often represents the composition in mass %. If the content of alloying
elements is low (in the order of a few percent) one may use the approximation

where is the mass fraction of , i.e. the mass% divided by 100. and are the

molar mass for and the major alloy element, respectively. In steels the major element is
iron (Fe) and its molar mass is roughly 55.85 g/mol and the molar mass of carbon (C) is 12
g/mol.

From a practical point of view one often would like to make a quick estimate whether
diffusion is important or not in a certain situation. Then it is convenient to apply the Einstein’s
formula. It can be used to estimate the average distance in a certain direction that an atom
is able to diffuse in time ;

Eq. 2-5

If all quantities are expressed in SI units is obtained in m. In the above example of C and Mn
at at 900 °C we find that during 1 hour (3600 s) C diffuses an average 0.2 mm and Mn 0.0004
mm. The C diffusion is certainly important in this case but if the Mn diffusion is important or
not depends on the special application. If we are interested in a certain distance and want to
know when to expect the effect of diffusion we can rephrase Eq. 2-5 into
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Eq. 2-6

2.2.1 Example: Diffusion Through a TubeWall

Consider a tube in a power station where carbon-rich gas flows at a temperature of 500 °C.
The wall thickness of the tube is 10 mm. The diffusion coefficient for carbon at this
temperature is .

Task: Assess if there is any leakage from the tube during the life time of the
power station (80 years). Will there be any changes in the composition of the
tube at earlier times, for example, one year?

Using Eq. 2-6 you find the following (remember to use SI units, i.e. to express the distance in
m):

We can then conclude that for shorter times in the range of a few years we would hardly
expect any “leakage” but on the time scale of the life time of the power station the effect
may become important. It may be tempting to conclude that the calculation tells us that
nothing is happening in the material at shorter times, say a year. However, this conclusion is
wrong and may be illustrated by calculating the average diffusion distance for one year using
Eq. 2-5:
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That is, the material is affected to a depth of  0.4 mm from the inner and outer sides.

To judge to what degree the composition is affected requires a more detailed calculation
described later.

See the continuation of this example in the advanced section below and then
continued in "Stationary Diffusion Through a Tube Wall " on page 31.

2.2.2 Advanced Example: Diffusion Through a TubeWall

Eq. 2-1 is readily extended to general 3D geometry and is then written

ADV Eq. 2-1

where the flux and the concentration gradient now are vectors. The “nabla”
symbol is often used and one writes .

In a Cartesian frame of reference with the axes we write the gradient operator:

ADV Eq. 2-2

The Einstein formula as expressed by Eq. 2-4 gives the average diffusion distance in a certain
direction.

l If we are interested in how long the average distance in a plane is the formula reads
.

l If we are interested in how far from the origin the atom has moved in all three dir-
ections the formula reads .

In most practical situations one is only interested about the diffusion distance in a certain
direction and Eq. 2-4 should be used.
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2.3 Frame of Reference

Diffusion represents a transport of material and that must be expressed relative to some
reference. The choice of reference has no effect on the physics and is completely arbitrary.
One may thus choose the reference that is most convenient for a certain problem. However,
the flux will be different in different frames of reference. The value of the diffusion
coefficient thus depends on the chosen frame of reference.

In diffusion it is common to use the following frames of reference:

l Lattice-fixed frame

l Number-fixed frame

l Volume-fixed frame

More frames of reference as well as variants of the above frames are included
in the literature.

In the lattice-fixed frame of reference diffusion is measured relative the crystal lattice. In this
frame of reference there may be a net-flow of atoms and crystal planes may be created or
annihilated by migration of dislocations as a consequence of diffusion. The diffusion
coefficients given in the lattice-fixed frame of reference are often referred to as the intrinsic
diffusion coefficients.

In the number-fixed frame of reference diffusion is defined in such a way that there is no net
flow of atoms. This is sometimes referred to as interdiffusion or simply as atomic mixing. In a
binary system A-B this mean that the flux of A is the same as the flux of B but in the opposite
direction when the number-fixed frame is used. The diffusion coefficients given in the
number-fixed frame of reference are often referred to as the interdiffusion coefficients or
the chemical diffusion coefficients.

The volume-fixed frame of reference is similar to the number-fixed frame but defined in
such a way that there is no net flow of volume.
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2.4 Fick’s Second Law: The Calculation of Concentration Profiles

"Frame of Reference" on the previous page discussed how to calculate the diffusional flux
when the concentration gradient is given. This section discusses how to calculate the gradient
of the concentration profile for a given situation and how the concentration profile develops
in time. The starting point is the so-called Fick’s second law. Despite its name Fick’s second
law is not really a ‘law of nature’ in itself but it can be derived from Fick’s law. Without
giving any mathematical details we conclude that the resulting equation is a so-called partial
differential equation, the solution of which gives the composition as a function of time and
distance as described in the advanced example below.

The equation can be solved by numerical methods or in simple cases analytical methods
using standard mathematical functions. When using the latter case of analytical methods it is
required, almost without exception, that the diffusion coefficient can be approximated as
being independent of the composition which in practice is never the case. Moreover, the
temperature is required to be constant, i.e. only isothermal conditions can be considered.
Consequently the analytical methods are very limited and can seldom be used for practical
calculations. Despite this they are valuable to give some understanding and to illustrate
general trends.

The solution of Fick’s second law gives the concentration as a function of time and location,
i.e. the concentration profile as a function of time. In physics such a function of space and
time is usually called a field, which can also be called the concentration field.

To find a solution one must give boundary conditions. First of all the concentration field must
be given at some time, usually set as t = 0. Other boundary conditions are also required,
which can be done in many ways. The simplest case is the closed system in which all
diffusional fluxes on the boundary of the system vanish. In this case no material can enter
into or leave the system. For more detail go to "Boundary Conditions" on the next page.

2.4.1 Advanced Example: Fick’s Second Law

For the general 3D case Fick’s second law may be written:

ADV Eq. 2-3
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where is the divergence operator. Using the Nabla notation the above equation is written

ADV Eq. 2-4

In a Cartesian frame of reference the divergence operator is

ADV Eq. 2-5

A solution of ADV Eq. 2-3 or ADV Eq. 2-4 is of the type describing the

concentration as a function of time and location, i.e. the concentration field as a function of
time. To find a solution one must give boundary conditions. For more information about
these mathematical details, refer to the suitable text books.

2.5 Boundary Conditions

In practice one may distinguish between two major types of boundary conditions. If surface
reactions are very rapid the surface concentration will quickly adjust to a composition in
equilibrium with the surrounding media. In a thermodynamic language this means that the
element under consideration will have the same activity or chemical potential at the surface
as in the surrounding media.

If the surface reactions occur with a finite rate it will instead be the flux of a component that
is given. A special case, which is very common, is that the surface reaction is so slow that it
can be completely neglected and then the flux at the surface vanishes. In a material with
several components it is common to have different types of boundary conditions for different
elements. For example, the fluxes of substitutional elements such as Fe, Mn and so forth
vanish but for interstitial elements like C and N there may be a finite flux or even a fixed
activity at the surface.

It should be emphasized that in practice the boundary conditions are thus more complex than
the idealized Dirichlet and Neumann conditions discussed in mathematics.
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2.6 Analytical Solutions

The analytical solutions are based on approximations that are seldom valid in reality.
Nevertheless they are handy and easy to use and give some valuable insight. The most
important ones are the error-function and the sinusoidal solution.

2.6.1 The Error-Function Solution

This solution expresses the concentration profile along the x-axis as

Eq. 2-7

The error function is denoted and is depicted in the figure below. It is available in most
computers. A and B are constants determined by the boundary conditions. The error function
solution predicts a step in composition at at the time .

Figure 2-3: The error function.

2.6.2 Example: Carburization of Steel

Carburization is a part of the case-hardening process in which the steel surface is hardened
by adding carbon to it and then letting carbon diffuse into the material. Suppose that a steel
with an initial carbon content is exposed to an environment that yields the carbon content

at the steel surface.
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Task: Give an expression for how the carbon concentration profile will develop
in time.

Use the error function and as the distance from the surface. Determine and to
fulfill the boundary conditions. At and at we have and Eq. 2-7

yields:

For and  and Eq. 2-7 yields . 

We thus find that .

The solution then is:

2.6.3 The Sinusoidal Solution

This solution is based on a periodic concentration profile with the wave length and is given
by

Eq. 2-8

is given by the boundary condition and the factor describes how the

amplitude decays exponentially with time, the shorter the wave length the quicker the decay.

2.6.4 Example: Homogenization of an Alloy

After casting, an alloy usually has more or less periodic concentration variations caused by
micro segregation during the solidification process. In order to level out these variations one
performs homogenization annealing.
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Task: Estimate the homogenization time required to reduce concentration
variation to 10% of its original amplitude. 

Eq. 2-8 yields i.e. . It is worth noting that the required time is

proportional to the square of the wave length. If the wave length can be decreased, say by a
factor 10, due to plastic deformation during hot rolling, the homogenization will be 100 times
faster.

Remark on internal oxidation: Simulations based on the homogenization method
are time consuming in such cases where the contents of the diffusing elements
are low in the matrix phase. Unfortunately, this is the case particularly for
internal oxidation which is of large practical importance. Nevertheless, the
calculations are stable and the results will eventually be found even for complex
cases.

2.7 Materials with Many Components

Most real materials such as steels, superalloys or light metals contain many different alloy
elements. In principle the equation

Eq. 2-9

may be formulated for each element. However, there is a severe complication that has very
important practical consequences. It has been found that diffusion of an element does not
only depend on the concentration gradient of but on the concentration gradient of other
elements as well. This was demonstrated in a very famous experiment by Darken where he
welded together two steels with the same carbon content but different silicon content and
then heated the joint.

See "Example: Darken’s Experiment " on page 51.

22



Darken found that carbon diffused from the Si-rich side to the silicon poor side.

Figure 2-4: Solid line: DICTRA simulation of Darken’s experiment, symbols: Darken’s
experimental points. The left side contains 3.80 mass% Si.

Suppose we have elements in the alloy. For example, in a low-alloy steel (Fe the major
element) with C, Mn and Si . Mathematically the coupling effect between the different
elements is taken into account by replacing Eq. 2-9 with the equation below:

Eq. 2-10

Instead of one diffusion coefficient for element we now have diffusion coefficients for
each with respect to the concentration of each element except one arbitrarily chosen
element which will be dependent. We then have different diffusion coefficients in
an alloy with elements. The diffusion coefficient denotes the diffusion coefficient for

element caused by a concentration gradient of element when element has been chosen

as the dependent element. The number of different diffusion coefficients thus becomes large
in real alloys which can have five or more alloying elements and computer- based methods
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need to be applied. It should be emphasized that if one would like to change dependent
component it is straight forward but certain rules must be obeyed.

2.7.1 Example: Diffusion in a High-Entropy Alloy

Consider a so-called high-entropy alloy consisting of equal atomic amounts of Co-Cr-Fe-Mn-
Ni. During casting there will be micro segregation yielding concentration variations.

Task: Write down the diffusion coefficients needed to describe the
homogenization process in the alloy. How many are there? Write Eq. 2-10 for
this alloy.

This system consists of five components and one of them must be chosen as a reference. We
thus have 4*5 = 20 diffusion coefficients. This choice of reference is arbitrary so let us choose
Co as reference. We then obtain:

2.7.2 Advanced Example: Diffusion in a High-Entropy Alloy

Choice of Independent Concentration Gradients

Here we will discuss how to change from one dependent concentration gradient to another.
Introducing the mole fraction and approximating the molar volume is independent of
concentration we write instead of Eq. 2-10:
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ADV Eq. 2-6

Observe that the summation is now performed over all elements. However, the mole
fractions must sum up to unity, i.e. the sum of their gradients must vanish,

ADV Eq. 2-7

and we may thus use relation ADV Eq. 2-6 to eliminate any of the gradients, e.g. that of
element .

We then rewrite Fick's equation in terms of only independent gradients:

ADV Eq. 2-8

ADV Eq. 2-9

It should be observed that only the coefficients affect the result and not the individual

coefficients . However, the dependent component can of course be chosen arbitrarily
but the diffusion coefficients will then be different. In fact from ADV Eq. 2-9 one may

derive relations like

ADV Eq. 2-10

It is easy to convince oneself that the resulting fluxes are independent of the choice of
dependent component provided that the diffusion coefficients are transformed in
accordance with ADV Eq. 2-10.

It is convenient to write the equations in vector-matrix notation provided that. Instead of
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we thus write

ADV Eq. 2-11

where

The diffusion coefficient matrix thus has zeros in the N:th column.

Transformation Between Different Frames of Reference

We may transform the flux from one frame of reference to another by multiplying with a
transformation matrix :

ADV Eq. 2-12
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It is easy to convince oneself that the gradients are not affected by this transformation but
the diffusion coefficients will transform accordingly

ADV Eq. 2-13

and consequently

ADV Eq. 2-14

As an example, it is instructive to consider a binary system. Suppose the fluxes are given in a
lattice-fixed frame of reference and that the individual (intrinsic) diffusion coefficients are
known. We would like to transform to a number-fixed frame of reference, i.e. we want to
consider interdiffusion. This is achieved by the transformation

Here information is lost because we now have only one independent flux. In order not to lose
any information we may introduce the net flux of atoms in the lattice-fixed frame of
reference as a second independent flux

The flux is related to the Kirkendall effect because the velocity of Kirkendall markers in the
number-fixed frame of reference is

The transformation matrix thus is

ADV Eq. 2-15

and the new diffusion coefficients become
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ADV Eq. 2-16

These expressions are identical to Darken’s classical expressions remembering that he
denoted the individual diffusion coefficients as and using our

notation. In the left column of matrix the upper element is the interdiffusion coefficient,

called the chemical diffusion coefficient by Darken, and the lower is the difference in
individual coefficients giving the Kirkendall effect.

Thermodynamic Driving Forces and Onsager Relations

If one assumes that the fluxes are independent in the lattice-fixed frame of reference on may
postulate:

ADV Eq. 2-17

Here denotes the mobility of element and

and
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Observe that i.e. the L-matrix is symmetric in accordance with Onsager reciprocity

law. In the case of a diagonal matrix this observation is trivial. This property must remain
even when off-diagonal elements are included. It should be noted that the Manning theory
for the correlation effect gives a symmetric L-matrix where all matrix elements only depend
on the diagonal mobilities.

Diffusion is an irreversible process and this is expressed by the second law stating that the
entropy production must be positive or vanish when there is equilibrium. Under isothermal
conditions and if the fluxes are expressed in the lattice-fixed frame of reference the local
entropy production is given by

ADV Eq. 2-18

The entropy production is a measure of how irreversible the process is and must be
independent of the frame of reference which is chosen by the scientist. If the fluxes are
transformed to by a transformation matrix the product unless also

the driving forces are transformed . We thus find in the following way

Obviously we must have where is the unity matrix and consequently

i.e.

and consequently

The matrix thus is transformed

ADV Eq. 2-19

It is seen that if is symmetric also is.
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3 One-Phase Diffusion Problems

3.1 Setting Up a Simulation

In order to make diffusion calculations one needs data on diffusion coefficients and the
appropriate boundary conditions that represent a certain problem. In the following sections
we will discuss how to solve a number of practical problems. Our main tool for the numerical
calculation is using the Diffusion Module (DICTRA) in Graphical Mode. A calculation using the
Diffusion Calculator is based on the original DICTRA Console Mode code.

There are many examples and tasks included in this tutorial. For the One-Phase
Diffusion Problems step-by-step instructions are included to help you begin to
learn how to reproduce the simulations that are described in the theory and in
the relevant sections. For the rest of the tasks throughout this guide, the
parameters needed to reproduce the plots using Graphical Mode are included
within the text but the specific instructions are not always provided. See "List of
Examples " on page 8 to see what is available in each section.

3.1.1 Simulations in Graphical Mode versus Console Mode

Console Mode

When using Console Mode commands, building a macro file to create the simulation
typically involves the following steps:

1. Define thermodynamic and kinetic data for the system.

2. Define the initial system.

a. Define size and grid.

b. Define initial concentration profile.

3. Define temperature as a function of time.

4. Define boundary conditions that may be functions of time.
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5. Perform the simulation for the chosen time.

6. Plot the results – many choices possible.

Graphical Mode

The overall sequence of what you define in Graphical Mode for the Diffusion Module is
similar to the process in Console Mode. However, instead of using commands you are adding
nodes and then entering settings for each of the nodes. Some advanced functionality is only
available in Console Mode, and some of the commands available in Console Mode are not
needed in Graphical Mode because it is automatically integrated into the Activity nodes, e.g.
the Diffusion Calculator.

The following is a general overview of the steps to set up the simulation.

1. Use the Diffusion Simulation template to add the System Definer, Diffusion Calculator
and Plot Renderer activity nodes.

2. On the System Definer, you select the thermodynamic and kinetic databases and add
elements, which automatically include all phases.

3. On the Diffusion Calculator, you set the geometry (by default the geometry is planar),
add region(s) and enter grid(s) and phase(s) in the region(s). You then enter com-
position(s) of phase(s).

4. On the Plot Renderer, you choose what to plot and then run the simulation, i.e. you
Perform the sequence of nodes you have defined in the tree to produce the output sim-
ulation. You can also add a Table Renderer to tabulate the results of a single equi-
librium calculation or a stepping operation.

3.2 Stationary Diffusion Through a Tube Wall

Here we will revisit the example Diffusion Through a Tube Wall first described in the theory
section,"Fick’s Law and the Diffusion Coefficient" on page 13. The next two sections show you
how to recreate these plots using both Graphical Mode and Console Mode.
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Task: Consider a tube in a power station where carbon-rich gas flows at a
temperature of 500 °C. The wall thickness of the tube is 10 mm. The diffusion
coefficient for carbon at this temperature is . Assess if there will be

any leakage from the tube during the life time of the power station, 80 years.
Will there be any changes in the composition of the tube at earlier times, say
one year?

We shall make the calculation a bit more realistic by considering the evolution of the carbon
concentration profile and take into account the concentration dependence of the diffusion
coefficient, i.e. it no longer has the constant value given above. That value is actually only
valid for very low C content. In order to solve this problem we must define boundary
conditions. For simplicity we consider only a binary Fe-C alloy with an initial carbon content
of 0.1 mass% C. On the outer side of the wall we take a very low carbon content (e.g. 0%)
and on the inside we assume sooting which corresponds to a carbon activity relative graphite
of unity or higher.

Results of the Simulation

Figure 3-1 shows the calculated carbon concentration profiles in the tube wall at different
times. It is notable that already after one year there is a substantial carburization of the
inner side of the wall and a corresponding decarburization of the outer side. We may also
notice that the depth agrees well with 0.4 mm obtained in the original example using
Einstein’s formula, i.e. .
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Figure 3-1: Calculated carbon concentration as function of distance (m) from inner tube wall
at different times as indicated.

Figure 3-2: Calculated carbon flux in moles per second and square meter as a function of
distance (m) from inner tube wall at different times as indicated.

It is also notable that close to the end of the life time the concentration profile is very close
to the one after 800 years. The carbon flux calculated from the concentration profiles using

is shown in Figure 3-2. As can be seen it is always positive although it is first
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quite low except at the inner and outer sides of the wall. Carbon is thus flowing from the
inside towards the outside. At very long times a steady state is approached if the boundary
conditions are constant. In the steady state the flux has the same value everywhere in the
system and it may be obtained by the approximate form of Fick’s law:

where is the thickness of the wall and the difference in weight fraction carbon

between the two sides. Inserting the appropriate values for the present example we obtain

which agrees quite well with the blue line ( ) in Figure 3-2.

3.2.1 Graphical Mode - Diffusion Through a TubeWall

Below are the step-by-step instructions to recreate the example described in "Stationary
Diffusion Through a Tube Wall " on page 31.

For comparative purposes only, you can also look at the Console Mode example
that uses commands in "Console Mode Commands - Diffusion Through a Tube
Wall" on page 40.

Configure the System Definer

1. Open Thermo-Calc and go to Graphical Mode. The mode defaults to the one last used.
If necessary click the Switch to Graphical Mode button in the toolbar.

2. On the Configuration window under Templates, click Diffusion Simulation. Three
nodes are added to the Project tree (System Definer, Diffusion Calculator and Plot
Renderer).
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3. On the System Definer → Configuration window under Package, select Demo: Steels
and Fe-alloys (FEDEMO, MFEDEMO).

4. In the Periodic Table click to select the elements Fe and C .

5. Click the Phases and Phase Constitution tab. At the bottom of the window click to
clear the Check/uncheck all box then select the FCC_A1 check boxes for FEDEMO and
MFEDEMO and the GRAPHITE check box for FEDEMO.

35



6. Click the Components tab. Next to carbon (C) click to clear the SER check box and then
select GRAPHITE from the list.

Configure the Diffusion Calculator

1. In the Project window, click the Diffusion Calculator. In the Configuration window
select a Cylindrical geometry and enter 0.02 in the First interface position field.

2. Under Region enter the following in the fields:

a. Name: Wall

b. Width: 0.01 m

c. Points : 200. Keep the default, Linear grid type.

d. Choose FCC_A1 as the Phase.
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e. Next to Composition Profiles click Edit.

f. In the Initial composition of FCC_A1 window, for Component C, enter 0.1 in
both fields then click Apply.

3. For both the Left Boundary Condition and Right Boundary Condition, selectMixed zero
flux and activity. Then for both choose Activity from the lists and enter 1.0 for the
Left Boundary Condition and 1.0E-10 for the Right Boundary Condition.
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4. Under Thermal Profile, set the following:

a. Temperature: 500Celsius

b. Simulation time: 2.5E11Seconds

5. Click the Options tab.

a. For the Time integration method, choose Euler backwards.

b. Keep all the other defaults.

Configure the Plots

1. In the Project window, click the Plot Renderer 1 node. In the Configuration window,
under Y-axis click to clear the Automatic scaling check box. Then in the fields enter
the Limits 0.0 to 0.2 with a step of 0.02.

2. In the Time field, enter the following numbers as a series with a space between each
number (in Seconds): 0.0 3.1536E7 2.5E8 2.5E9 2.5E10 2.5E11.

3. Click Perform to plot the first diagram showing the concentration profiles.
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4. Add a second plot by right-clicking the Diffusion Calculator and choosing Create New
Successor → Plot Renderer.

5. Click Switch to advanced mode. Under Y-axis choose User-defined and enter JL(C)
in the field.

6. In the Plot condition field, enter (or copy and paste) the same series of times as for the
first plot: 0.0 3.1536E7 2.5E8 2.5E9 2.5E10 2.5E11.

7. Click Perform to plot the carbon flux as function of distance for the chosen times.

39



3.2.2 Console Mode Commands - Diffusion Through a TubeWall

The following commands (indicated by a code font) are used with the DICTRA module in
Console Mode to perform the simulation described in "Stationary Diffusion Through a Tube
Wall " on page 31. In the example below, some descriptive text is included to help guide you
through the logic of setting up the simulation. This example is also created using Graphical
Mode in "Graphical Mode - Diffusion Through a Tube Wall " on page 34.

The details of the commands (which are abbreviated in this example) and the
use of macro files is described in the online help (press F1 in Thermo-Calc). This
section is intended only for comparative purposes as Graphical Mode is used
throughout the rest of this tutorial guide and is recommended for new users.

Define thermodynamic data and kinetic data for the system

goto da

sw

fedemo
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def-sys fe c

rej ph * all

res ph fcc,grap

get

app

mfedemo

def-sys fe c

get

goto d-m

Define the initial system: Size and grid

en-reg

wall

en-grid

WALL

10e-3

LINEAR

200

Define initial concentration profile

en-phase

ACTIVE

WALL

MATRIX

fcc_a1#1

en-com
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WALL

FCC_A1

w-p

C

LINEAR

0.1

0.1

Define temperature as a function of time

set-cond

GLOBAL

t

0

773

N

Define boundary conditions

In order to define the boundary conditions we want to use graphite as reference state for
carbon. First we set the reference state:

set-ref

c

graphite

*

100000
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Then we set the boundary conditions and use mixed conditions and set the activity for C on
each side of the system. First the lower side which we take as the inner side of the wall
having a high C activity

set-cond

boundary

lower

mixed

activity

0

1.0;  (C activity is set as unity)

*

N

Then the upper side which we take as the outer side of the wall having a very low C activity

set-cond

boundary

upper

mixed

activity

0

1e-10;(a low value but for numerical reasons we do not chose 0)

*

N

Perform the simulation for the time chosen

Set the end time of simulation to 2.5 1011 s (8 000 years) and set some other conditions.
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s-s-time

2.5e11

YES

2.5E+10

1E-07

1E-07

s-sim-cond

1

And start the simulation

Simulate

Plot the results

Start by going to the postprocessor module.

Post

Define axes variables and scaling of y axis

s-d-a x distance

s-d-a y w-p c

s-sca y no 0.0 0.2

Next define at what times (in seconds) to show the concentration profiles.

s-p-c

time

31536000 2.5e8 2.5e9 2.5e10 2.5e10 2.5e11

plot

@?
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This commands halts the program after the plot. The user needs to press the return to
continue to the next plot. The next plot is the carbon flux as function of distance for the
chosen times.

s-d-a y jl(c)

plot

3.3 Example: Diffusion in a Joint Between Dissimilar Materials

Consider two materials in the same phase but with different compositions. These two
materials are joined together in a weldment and then kept at an elevated temperature for a
period of time. This results in diffusion because the composition differences tend to level out.
In the scientific literature such a joint is often referred to as a diffusion couple.

Task: Consider a steel plate 0.5 mm thick with a 0.1 mm (100 µm) Ni-foil added.
For simplicity we approximate the steel as pure Fe. The whole assembly is then
kept at 1200 °C for 10 h. Assess what happens with the Ni concentration.

Results of the Simulation

First the result is shown and then how to do the calculation. As can be seen the Ni foil has
started to dissolve in the steel already after 1 h. The calculation is quite simple and is shown
next.
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Figure 3-3: Calculated Ni concentration profiles after different times at 1200 °C. Initially there
is a 100 µm thick foil of pure Ni on the left hand side.

Below is information about how to recreate this example. The instructions build
on the previous example described in "Graphical Mode - Diffusion Through a
Tube Wall " on page 34.

3.3.1 Simulating Diffusion in a Joint Between Dissimilar Materials

1. Add a Diffusion Simulation template.

2. For the System Definer add the Demo: Steels and Fe-alloys (FEDEMO, MFEDEMO)
databases and select the elements Fe and Ni.

3. Define Region 1 for the Diffusion Calculator. You can rename the region if you want:

a. Width: 0.0005 m

b. 100 points

46



c. Linear grid type

d. Phase: FCC_A1

e. Composition profiles: Click Edit then keep the default, Fe, as the Dependent com-
ponent and choose Step for the composition of Component Ni.In the fields,
enter from 99.99 to 0.01 mass% with a step at 0.0001 m (0.1 mm). Click Apply.

f. Under Thermal Profile, choose Celsius as the Temperature scale and enter 1200
in the field. Choose Hours for the Simulation time and enter 100.

4. Click Perform Tree and the calculation starts.  Click to open the Event Log window to
watch the calculation perform. A concentration profile displays in the Results window.
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Now you will adjust and experiment with the plot parameters on the Configuration
window for the Plot Renderer.

5. The default axes have the Distance inm and the Ni content. Change the Distance to
µm and click to clear the Automatic scaling check box. Enter the Limits 0.0 to 500

with step 50. Click Perform and observe the change to the plot.
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You can also change the size of the plot window. Right-click in the plot and choose
Properties. In the Plot Properties window that opens, click Define the plot area size
and use the suggested values.

Click OK and the plot window has a different format as shown below.
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Next we will recreate the plot in Figure 3-3.

6. Go to the Plot Renderer Configuration window. Click the green plus button to Add an
axis.

7. You can now add another time to be plotted in the same diagram. Click the button
twice more and add 0, 1 and 10 hours and click Perform. You can also add labels to
mark the time. To do this, right-click in the plot and choose Add Label.
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3.4 Example: Darken’s Experiment

This example requires a license for the TCFE and MOBFE databases. If you do not
have these databases, you can still follow along but you will not be able to
perform the simulation.

In a famous experiment Darken welded together two steels of similar carbon contents but
different Si content, see the table below. The joint was then heat treated for some time at
1050 °C (1323 K).

Task: Predict how the composition of the weld develops in time.

Table 3-1: Composition of steels in Darkens experiment

Steel Mass% C Mass% Si

Si-rich 0.49 3.80

Si-poor 0.45 0.05
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The following example builds on some basic concepts used in the "Example:
Diffusion in a Joint Between Dissimilar Materials" on page 45. See that example
for more information as required.

Define the System

1. Open Thermo-Calc in Graphical Mode.

2. On the Configuration window under Templates, click Diffusion Simulation.

3. On the System Definer Configuration window click to select the elements Fe, Si and C.

4. Under Package in the upper right of the Configuration window, select Steels and Fe-
alloys (TCFE9, MOBFE4). The version of the databases available depends on your
license.

Define the Diffusion Parameters and Plot

1. In the Project window, click the Diffusion Calculator.

2. Under Region in the Width field, enter 0.05 m. Then enter 100 points and choose a
Double geometric grid type. Enter a Lower ratio of 0.95 and an Upper ratio of 1.05.
This means that the grid will be denser in the middle where there is the step in
composition. You will immediately see the distribution of grid points as partially shown
below.

3. Choose FCC_A1 as the Phase and then click Edit.

4. Keep the default, Fe, as the Dependent component and choose Step for both of the
composition profiles of Component Si and Component C.

a. For Si, enter from 3.8 to 0.05 with a step of 0.025.

b. For C, enter from 0.49 to 0.45 with a step of 0.025.
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The Initial Composition profile should now look like this:

5. Click Apply.

6. Enter a Temperature of 1323 Kelvin and choose Days for the Simulation time and
enter 13 in the field.

7. Click Perform Tree. Click to open the Event Log window to watch the calculation per-
form. A concentration profile displays in the Results window.

Adjust the Plot Parameters

1. In the Project window, click the Plot Renderer to open its Configuration window.

2. For the X-axis, keep the default Distance asm.

3. For the Y-axis, choose All for the Composition .

4. Click to clear the Automatic scaling check box and enter Limits 0 to 4 with step 0.25.
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Click Perform.

You can also change the size of the plot window. Right-click in the plot and choose
Properties. In the Plot Properties window that opens, click Define plot area size and use the
suggested values. Click OK and the plot window has a different format as shown below.

If we choose to plot the Carbon content only and rescale the Y-axix on the Plot Renderer then
click Perform, you will get a plot like the one below.
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3.5 Example: Carbon Diffusion in a Ni-Plated Steel

We now revisit the example described in "Stationary Diffusion Through a Tube Wall " on
page 31. This example is solved using the so-called homogenization method to improve
numerical stability.

Remark on internal oxidation: Simulations based on the homogenization method
are time consuming in such cases where the contents of the diffusing elements
are low in the matrix phase. Unfortunately, this is the case particularly for
internal oxidation which is of large practical importance. Nevertheless, the
calculations are stable and the results will eventually be found even for complex
cases.

Task: In order to avoid the problems caused by the carbon-rich gas flowing in a
tube at 500 °C, we would like to protect the steel with a thin layer of pure Ni. We
hope that the Ni-layer acts as a diffusion barrier for C. This is expected from the
fact that the carbon solubility is at least one order of magnitude lower in Ni than
in Fe, see Figure 3-4 calculated with Thermo-Calc. Predict how the Ni-plating
affects the carbon diffusion through the tube wall.
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Figure 3-4: Calculated C content in a) Fe and b) in Ni at a carbon activity of unity relative
graphite.

Have a look at the example "Example: Darken’s Experiment " on page 51. This
classic example demonstrates that an inhomogeneous distribution of alloy
elements has a strong effect on the quite rapid carbon diffusion.

We may thus repeat the calculation performed earlier with only Fe and C and now add the
0.1 mm Ni layer with a very low carbon content at the side of the high carbon activity.
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Figure 3-5: Calculated carbon concentration as function of distance (m) from inner tube wall
at different times as indicated. Inner tube wall coated by 0.2 mm Ni layer.

The diagram is plotted with the same scaling as shown in the first part of this example (see
Figure 3-1) and we see that the Ni-coating has a strong effect on the C diffusion as expected.
However, we also note that even though the C content is very low in the Ni-layer it starts to
increase in the steel layer after some time. In fact, it looks almost as if the C content in the
steel close to the Ni plate is almost the same as without the coating. It thus seems as the
coating is the most effective in the early stage but loses its efficiency later. This seems to be
a rather general conclusion. The diffusion coefficient for carbon is very similar in Fe and Ni
and we can use Einstein’s formula ( ) to estimate after how long time the effect of

the Ni coating becomes less important. We insert 0.2 mm as the distance and obtain

The conclusion is that the Ni barrier loses its efficiency within four months. This is in good
agreement with the simulation. A simulation for 10 years is added in Figure 3-6.
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Figure 3-6: Calculated carbon concentration as function of distance (m) from inner tube wall
at different times as indicated. Inner tube wall coated by 0.2 mm Ni layer.

3.5.1 Simulating Carbon Diffusion in a Ni-Plated Steel

These instructions build on the previous examples, in particular the first in this series
described in "Graphical Mode - Diffusion Through a Tube Wall " on page 34.

1. Add a Diffusion Simulation template. Add the Demo: Steels and Fe-alloys (FEDEMO,
MFEDEMO) databases for an Fe-0.01Ni-0.01C alloy.

2. Click the Components tab. For the C component, click to clear the SER check box and
choose GRAPHITE as the reference phase.

3. Add the settings to the Diffusion Calculator as follows. Add a Linear grid region named
Couple with 0.01 m width and 200 points for the FCC_A1 phase.

4. Define the initial composition of the FCC_A1 phase. For the Ni component, add a step
from 99.99 to 1.0E-5 step at 2.0E-4 m. For the C component, add a step from 0.001

to 0.1 with a step at 2.0E-4 m. Click Apply.
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5. Define the left and right boundary conditions and the thermal profile.

a. Left Boundary Condition:Mixed zero flux and activity, Zero flux for Ni , and for
C an Activity of 1.0.

b. Right Boundary Condition:Mixed zero flux and activity, Zero flux for Ni , and
for C an Activity of 1.0E-5.

c. Thermal Profile: 500 Celsius and a time of 36500 days (10 years).

Now you will define the homogenization method to improve numerical stability. For
details about these options, press F1 and search the help.

6. Click the Options tab and choose Homogenization as the Default solver. Then choose
Euler backwards as the Time integration method.

7. Next you will plot the carbon activity and composition profiles. First, add a second Plot
Renderer to the Project tree (hint: right-click the Diffusion Calculator). If you want you
can also right-click the nodes in the tree and rename the System Definer, Diffusion
Calculator and Plot Renderer nodes.
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8. For the Activity profile C plot, click Switch to advanced mode. Then for the Y-axis,
choose Axis variable Activity of component for C.

9. Click Perform and compare to the plot below.
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10. For the Composition profile C plot, add two axes. Then keep the defaults except as
follows.

l For all X-axis Distance variables, change m to µm.

l For the first Y-axis, set the limits between 0.0 and 0.2 with a step of 0.05.

l For the second Y-axis, click to clear the Automatic scaling check box and then
keep the defaults. Edit the Time to be 365 Days.

l For the third Y-axis, click to clear the Automatic scaling check box and then
keep the defaults. Edit the Time to be 30 Days.
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11. Click Show Grid to include the grid on the plot. Click Perform and compare to the plot
below.
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4 Two-Phase Diffusion Problems in Binary Alloys

4.1 Diffusion Controlled Growth or Shrinkage of Phases

Consider an assembly made by joining two materials having different composition as well as
different phases, say bcc and fcc. If the assembly is in equilibrium nothing will happen
despite the difference in composition. If the composition on each side is not in equilibrium
there will be a reaction. One phase will grow on behalf of the other phase.

4.1.1 Local Equilibrium Approximation

A common and very useful approximation is to consider the two phases on each side of a
phase interface as being locally in thermodynamic equilibrium. In a binary system this means
that the composition on each side of the phase interface can be read from the binary phase
diagram for the temperature under consideration. This is illustrated in the figure below
where a schematic concentration profile is plotted on the left side and a part of the binary
phase diagram with concentration axis vertically on the right side. As can be seen this
construction results in concentration differences in each phase close to the interface. Such
concentration differences cause diffusion in each phase.
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Figure 4-1: Local equilibrium approximation to establish the compositions on each side of the
α (bcc) / γ (fcc) in a diffusion couple between two parts having initial composition and
.

4.1.2 The Flux Balance Equations

If the fluxes balance, i.e. if the amount of that leaves one phase is exactly the same as the
amount that enters the other phase the interface does not move.  However, in general they
will differ and the interface moves. The rate of migration is calculated from the flux
balance for element

Eq. 4-1

For simplicity the molar volume is approximated as constant and the same in both phases. All
quantities in the equation are evaluated close to the migrating phase interface. The
assumption of local equilibrium allows us to read the content in and α on the left side
directly from the binary phase diagram for the temperature under consideration. By solving
the diffusion problem in each phase and calculate the fluxes on each side of the interface its
migration rate may be calculated.

From the general form of the equation a number of conclusions about the migration
direction may be drawn by looking at the shape of the concentration profiles without making
any calculations. Some of these are shown in the figure below. As can be seen a conclusion
can be drawn directly when there is no diffusion in one the phases. We also find from Eq. 4-1
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that if diffusion is in opposite directions in the two phases a conclusion may be drawn without
the need of calculation. Only when diffusion occurs in the same direction in both phases we
need to do a detailed calculation to see how the fluxes balance and in what direction the
interface will move.
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Figure 4-2: Direct prediction of migration direction from shape of concentration profiles
without need of calculation.

4.1.3 Advanced: Diffusion Controlled Growth or Shrinkage

Number of Atoms Crossing a Moving Phase Interface and the Volume Change

In this section we shall discuss in more detail the conditions at a moving phase interface
between α and β, see Figure 4-3. When the two phases have different compositions, the
phase transformation must be accompanied by some diffusion in either one or both of the
two phases. Suppose that the β phase grows a distance and the α phase shrinks a distance

, as indicated in the figure. The increments are defined consistently positive in the
positive direction of the z-axis and thus is positive when it is on the right-hand side of the
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interface despite the fact that it shrinks when β grows. Also the fluxes are defined
consistently as positive in the positive direction of the z-axis.

We may set up local mass balance of a small element containing the migrating interface as
follows: is the area of the interface and the time increment. It is instructive to consider
the two phases separately and keep in mind that what leaves one phase must enter the
other.

Figure 4-3: Upper part: schematic representation of the growth of β phase and shrinkage of α.
Solid line indicates the initial position of the interface and the dashed line position after
interface migration. Lower part: The two phases are treated separately.

Number of moles of B leaving the β side of the element and crossing the interface:

ADV Eq. 4-1

Number of moles of B added to the α side of the element:

ADV Eq. 4-2

It is thus possible to write the number of B atoms crossing the interface in two different

ways. Nevertheless the two numbers must be identical in order for the total amount of B to
be conserved. Introducing and we write
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ADV Eq. 4-3

Similar equations may be set up for all component regardless of the number of
components. We thus find in general

ADV Eq. 4-4

It must be emphasized that for full consistency the fluxes and the displacement of the
interface must be expressed in the same local frame of reference in each phase. However, in
principle different types of frame of reference may be used in the different phases although
it may often be less convenient.

In a system with components summation of ADV Eq. 4-4 for all elements yields

ADV Eq. 4-5

Suppose we want to express the fluxes in each phase using the number fixed frame of
reference, then the right-hand side vanishes and we obtain

ADV Eq. 4-6

We may now eliminate and may rewrite the balance equation for component as

ADV Eq. 4-7

Which is the same as because it was assumed that the molar volume

is the same in both phases.  It should be noticed, as already mentioned, that the migration
rates and also must be expressed in the number fixed frame of reference.

In a system with components we have only independent equations of type ADV Eq. 4-
7 because summation over all just gives  0 = 0.
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The volume change accompanied by the transformation is and using ADV

Eq. 4-6 one obtains

ADV Eq. 4-8

If both phases have the same molar volume there is no volume change but if the growing β
has a larger volume than there will be a volume increase.

4.1.4 Precipitation and Dissolution of Particles

The method discussed in the previous sections also applies to the precipitation or dissolution
of particles in a matrix phase. However, for precipitation we have not yet discussed
nucleation of a new particle. In many cases nucleation is very important but there are also
cases of practical importance where it can be treated in a very simple way. We shall thus
first discuss the growth of a particle when it has been already nucleated. Consider a binary
alloy Fe-C which has been kept at a high temperature T0 for such a long time that it consists
of homogeneous γ with composition , see part of the phase diagram in Figure 4-4. When

the alloy is cooled to the temperature T1 in the α + γ two-phase field there will be a tendency
to form α. Suppose α has been nucleated and now grows. We can use the local equilibrium
assumption and sketch a concentration profile as we did for the diffusion couple, see Figure
4-1, but the profile will be different, see Figure 4-5.
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Figure 4-4: Part of the Fe-C phase diagram (schematic) showing the fcc (γ) and bcc (α) phases.

Figure 4-5: Local equilibrium approximation to establish the compositions on each side of α/ γ
interface during formation of α from supersaturated γ with composition .

We can see from the concentration profile that C will diffuse away from the C-poor α phase

into γ. In this case the concentration in α is constant and thus there will be no diffusion in α.
From the upper right in Figure 4-2 we conclude that α will grow. The growth rate is
calculated from the flux-balance equation, i.e. .

The same reasoning holds also for dissolution of an α particle. Suppose that the alloy has
been kept at T1 for such a long time that we have reached equilibrium and the composition

also in γ is constant. Remember that if we know the size of the system we can roughly
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estimate the time needed to reach equilibrium from the Einstein formula . If

temperature is now increased the composition on each side of the interface will change in
accordance with the phase diagram and there will be gradients in both phases resulting in
diffusion. It is left to the reader to sketch a reasonable concentration profile for this case. It is
then seen that the fluxes go in opposite direction and result in shrinkage of α.

4.2 Example: Fe/Fe-10mass% Ni Diffusion Couple at 850 °C

Task: A 100 µm Fe foil is joined with a foil having the same thickness but
consisting of an Fe-10mass%Ni. The joint is kept at 850 °C for a long time. The
appropriate part of the Fe-Ni phase diagram is shown in the figure below and it
is seen that Fe is bcc whereas the alloy with 10 mass% Ni is fcc at this
temperature. Predict how the amount of fcc and bcc and the Ni-concentration
profile evolves with time at 850 °C.

Figure 4-6: The appropriate part of the calculated Fe-Ni phase diagram.
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From the phase diagram in the figure, it is seen that the equilibrium state should be one-
phase fcc with 5 mass% Ni because the two foils have the same thickness. The bcc phase will
thus be consumed during the equilibration. Nevertheless, we observe further that the
concentration profile is of the type on the left part of Figure 4-1 . It is thus clear that even if
we know that the final state must be fcc we cannot say, without a calculation, how the
reaction will proceed because Ni diffusion occurs in the same negative direction in both
phases.

As diffusion is much faster in bcc than fcc we may conclude that the Ni-flux in bcc would
dominate in the early stage when there is still a strong concentration gradient in bcc.

From Eq. 4-1 ( ) we thus conclude that the interface will move to the

right, i.e. the bcc phase will grow. This growth will continue until the concentration profile in
bcc is leveled out and diffusion in fcc becomes important. When that has happened we
conclude that the reaction will be reversed and the interface will move to the left, i.e. fcc will
grow.

This behavior is now studied in a simulation using the Graphical Mode interface.

There are no step-by-step instructions included. Only the results are shown.
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Figure 4-7: Calculated Ni concentration profiles at 850 °C after 0, 1, 2, 10 and 20 days. As can
be seen the fcc phase shrinks.

The Ni-concentration profiles for the first 20 days are shown in Figure 4-7 and confirm the
expected growth of bcc. This is also shown in Figure 4-8 showing the volume fraction of fcc as
a function of time during the first 50 days.
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Figure 4-8: Calculated volume fraction of fcc during the first 50 days.

From Figure 4-8 it seems as there is a minimum in fcc fraction after around 50 days, i.e.
when the concentration difference in the bcc phase has leveled out. Again we can use the
Einstein formula in the form of to estimate how long time it will take to achieve a

homogeneous Ni content in bcc. At this temperature the diffusion coefficient of Ni in bcc is
approximately and the Einstein equation yields

in reasonable agreement with Figure 4-8.

The diffusion coefficient for Ni in fcc is approximately and the time estimated

to achieve also equilibrium in fcc, i.e. full equilibrium, should be roughly 1000 times longer,
i.e. .
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Figure 4-9: Calculated Ni concentration profile at various times as indicated.

Figure 4-10: Calculated volume fraction of fcc during the later stages. The bcc is fully
dissolved after 50 years.
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The detailed calculations using the Diffusion Module (DICTRA) are in reasonable agreement
with the simple estimates based on the Einstein formula but in addition they also give much
more detailed information. The concentration profiles in Figure 4-9 clearly reveals the jump
in composition corresponding to the difference . It should also be noted that even

when the bcc has fully dissolved there is a concentration variation in fcc and full equilibrium
is not established.

4.3 Example: Ferrite Formation and Dissolution in an Fe-0.2C Alloy

4.3.1 Isothermal Reaction

Consider a binary Fe-0.2 mass% C steel. First we will look at the formation of ferrite at 800 °C
after austenitizing at 850 °C. As can be seen from the appropriate part of the phase diagram
in Figure 4-11, the alloy is in the one-phase fcc state at the higher temperature if equilibrium
is established. In the next part of this exercise we will study the austenite formation from an
initial normalized structure of ferrite and pearlite.

At the lower temperature equilibrium is a mixture of bcc and fcc, i.e. bcc should form when
we cool to this temperature. According to the lever rule it should be a little bit less ferrite
than austenite at equilibrium. Assume that ferrite forms along the austenite grain boundaries
and that austenite grain size as 20 µm, which is a typical value. For simplicity you may
approximate the system with a planar geometry and for symmetry reasons only consider
only half the system, i.e. a size of 10 µm.

Task: Predict the ferrite formation during isothermal holding at 800 °C.
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Figure 4-11: Calculated part of Fe-C phase diagram. The arrow marks the alloy under
consideration.

The list of settings build on the examples starting in " One-Phase Diffusion
Problems" on page 30.

System Definer Settings

l FEDEMO and MFEDEMO databases

l Fe-0.1 mass% C steel

Diffusion Calculator Settings

l Region named austenite of width 10 µm with fcc_A1 having a composition profile of
constant C content of 0.2 mass%.

l Click on show left interface boundary and allow phase to form BCC_A2.

l Make an isothermal simulation at 800 °C for 120 seconds. This means that the tem-
perature drops instantly from 850°C to 800 °C, which of course is unrealistic. In the
next part of this example, the assumption will be refined.

l Set the integration method to Euler backwards.
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Plot Renderer 1 Settings

l Add a node to plot the concentration at different times.

l For the x-axis choose distance in µm, linear axis type, automatic scaling

l For the y-axis choose composition C in mass percent, linear automatic scaling

l Enter a time to plot and then click the plus sign four times to add axes and times to
plot the same plot at different times

The resulting concentration profiles at different times are plotted and shown below.

Figure 4-12: Calculated C concentration profiles at 800 °C for various times as indicated.

As can be seen already after 1 minute the concentration profiles in each phase level out and
full equilibrium is established with a little bit less than 50 % bcc.

Plot Renderer 2 Settings

Next plot the bcc volume fraction as a function of time.

l Add a second Plot Renderer node.

l For the x-axis choose time in seconds, linear axis type, automatic scaling

l For the y-axis choose total phase fraction by volume for BCC_A2, linear automatic scal-
ing
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Figure 4-13: Calculated volume fraction bcc as function of time at 800 °C.

Plot Renderer 3 Settings

It is instructive to plot the diagram using logarithmic scales on both axes.

l Add a third Plot Renderer node. This time you can clone it as you will just change the
axis type to logarithmic.

For your plot, you will not see the straight line included in Figure 4-14.
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Figure 4-14: Calculated volume fraction bcc as function of time at 800 °C using logarithmic
scales. The straight line indicates the slope ½.

From Figure 4-14 it is clear that the slope is ½ in the early stages. This is expected for a
diffusion controlled reaction before impingement, i.e. before the diffusion field reaches the
end of the system. Before impingement the thickness of ferrite is proportional to .

From Figure 4-12 it can be seen that impingement becomes important already after 2 s
which is also indicated in Figure 4-14.

4.3.2 Reaction During Cooling and Isothermal Holding

This part of the example refines the calculation by accounting for the finite cooling rate from
at 850 °C to 800 °C followed by isothermal holding at the lower temperature.

Task: Predict the ferrite formation during cooling from 850 to 800 °C and
subsequent isothermal holding. Consider the cooling rates 1 and 10 K/s,
respectively.
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The settings are the same as for the " Isothermal Reaction" on page 77
calculation except as follows. If you created a project file for the first part of the
example, it is recommended you save a copy of the file and adjust the settings
as needed.

Diffusion Calculator Settings

l Choose a non-isothermal profile and set the temperature to Celsius and the time unit
in seconds.

l Edit the thermal profile. Enter times and temperatures into the table. Temperature is
assumed to vary linearly between the different times.

l In the first calculation enter a high cooling rate i.e. at t = 0 set T = 850. At t = 50 s
set T = 800. Then keep the temperature constant until the end of calculation at 120 s.

l Set the simulation time to 120 seconds.

l Set the integration method to Euler backwards.

Plot Renderer Settings

The settings for each plot is the same except for Plot Renderer 1 where you change the times
for each axes to 0, 20, 30, 50 and 120 seconds (or any times you want).

The resulting concentration profiles as different times are shown in Figure 4-15. Compare to
Figure 4-12.

82



Figure 4-15: Calculated C concentration profiles at different temperatures. Cooling from 850
to 800 °C and with 1 K/s and thereafter isothermal holding. Temperatures indicated.

The lower temperature is reached after 50 s and there is still a substantial carbon gradient in
austenite which should be compared with the almost equilibrium after 60 s in Figure 4-12.
Nevertheless full equilibrium is established after 1 minute isothermal holding at 800 °C.

Figure 4-16 shows the corresponding concentration profiles assuming a cooling rate of 10
K/s, which is very high and can only be achieved in thin samples. In this case there is a
stronger deviation from equilibrium during cooling but after 2 minutes equilibrium is
established as in the previous cases.
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Figure 4-16: Calculated C concentration profiles at different temperatures. Cooling from 850
to 800 °C and with 10 K/s and thereafter isothermal holding. Temperatures indicated.

4.3.3 Austenite Formation During Heating

This example builds on the previous simulations " Isothermal Reaction" on
page 77 and "Reaction During Cooling and Isothermal Holding" on page 81
although no specific instructions are included. See if you can reproduce the plots
yourself.

Task: It may be interesting to find out how long time it would take to form a
homogeneous austenite structure from the two-phase mixture that was the end
result of the previous simulations. Start with the final structure of the previous
example and consider the reverse transformation during heating to 850 °C.

The easiest way to solve the problem is to edit the thermal profile by simply adding a heating
step from 800 to 850 °C and subsequent isothermal holding. The following figures show the
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concentration profiles with heating rates of 0.1, 1 and 10 K/s, respectively. The heating thus
takes 500, 50 and 5 s, respectively.

Figure 4-17: Calculated C concentration profiles at different temperatures. Heating from 800
to 850 °C and with 0.1 K/s and thereafter isothermal holding. Temperatures indicated.

85



Figure 4-18: Calculated C concentration profiles at different temperatures. Heating from 800
to 850 °C and with 1 K/s and thereafter isothermal holding. Temperatures indicated.

Figure 4-19: Calculated C concentration profiles at different temperatures. Heating from 800
to 850 °C and with 10 K/s and thereafter isothermal holding. Temperatures indicated.
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As can be seen 0.1 K/s is slow enough to allow equilibration at each temperature whereas
the higher heating rates yields more pronounced deviation from equilibrium during heating.
Nevertheless, 2 minutes at 850 °C is enough for full equilibration.

4.4 Example: Austenite Formation in a Normalized Steel

In low alloy steels there is a common heat treatment operation called normalizing. The
operation is performed in order to give the steel, which might have an unfavorable
microstructure a “normal” structure consisting usually of a mixture of ferrite and pearlite. It
is performed by fully austenitize the steel and then let it cool in air which corresponds to a
cooling rate 0.1 K/s or less depending on the size of the steel component. It is common that a
steel producer deliver the steel in the normalized condition. Consider now martensite
hardening of a normalized steel. First it needs to be austenitized and then quenched to form
martensite.

Task: Assess how rapidly the austenite forms in a normalized steel Fe-0.2C with
the same grain size as in"Example: Ferrite Formation and Dissolution in an Fe-
0.2C Alloy" on page 77 .

We will first make a simulation approximating the steel as a binary Fe-C alloy. We shall see
later that this may not always be a good approximation, not even when the alloy content is
low, but here we use the approximation for simplicity.

If we consider the same steel Fe-0.2 mass% C the simplest way to achieve the initial
normalized structure is to start with the previous example involving cooling but change to a
slow cooling rate, say 0.1 K/s and extend the cooling to the eutectoid temperature that is 727
°C in binary Fe-C. Below this temperature the remaining austenite will form pearlite.
However, we shall neglect the pearlite formation and use the two-phase mixture of ferrite
and austenite as our initial condition for simulation of austenite formation. This is a
reasonable approximation because upon heating pearlite can transform to austenite without
the need of any long-range diffusion in a rather quick process.
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The result is shown in the following figure. As can be seen the heating is slow enough to
allow almost full equilibrium at all temperatures.

Figure 4-20: Calculated C concentration profiles at different temperatures during heating
from 727 to 850 °C and with 1 K/s. Temperatures indicated.
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5 Two-Phase Diffusion Problems in
Multicomponent Alloys

5.1 Introduction to Diffusion Problems in Multicomponent Alloys

In principle the same approach is used as in binary alloys to treat growth and shrinkage in
alloys with arbitrary number of components. However, there is a complication because the
local equilibrium tie line at the phase interface cannot be directly read from the phase
diagram. In a ternary system there is an infinite number of possible tie lines at a given
temperature, see Figure 5-1 showing an isothermal section in the Fe-Mn-C system. Consider
for example an alloy with a composition marked by *. At equilibrium the tie line is the one

passing through * and there will be a mixture of α and γ with fractions that can be evaluated
from the lever rule, see Figure 5-2.

But which tie line is the correct one during a phase transformation? It should be noticed from
Figure 5-1 and Figure 5-2 that each tie line is represented by a given value of the carbon
activity . For this ternary case there is thus one more unknown than for the binary, where
the only unknown was the migration rate that could be calculated from the single flux-
balance equation, i.e. . However, in the ternary case we have two

independent flux-balance equations. In the present case one for C and one for Mn. The
correct tie line thus is the one that satisfies both flux balances. It turns out that for a general
system with components activities must be fixed in order to define a unique tie line.
We thus have unknown activities and 1 unknown migration rate, i.e. totally
unknowns. We have the same number of independent flux balance equations, i.e. the flux
balances are enough to calculate the interfacial tie line and the migration rate.
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Figure 5-1: Schematic isothermal (T = T1) section of the Fe-Mn-C phase diagram.
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Figure 5-2: The lever rule in a ternary isothermal section. The fraction of α is .

5.1.1 Advanced: Two Phase Problems

Determination of Local-equilibrium Tie Line in a Multicomponent System

The Gibbs phase rule states the number of potential quantities needed to specify
equilibrium, being referred to as the number of degrees of freedom. The phase rule reads

ADV Eq. 5-1

where is the number of components and the number of coexisting phases. Pressure and
temperature are thermodynamic potentials and for the common case when they are fixed
ADV Eq. 5-1 becomes , i.e. the same number of chemical potentials must be given.

The chemical potential of a component is related to its activity relative a reference state
by means of

ADV Eq. 5-2

where is the chemical potential in the chosen reference state. In the phase

transformations discussed so far we consider a phase interface between two phases, i.e.
and the number of potentials needed to specify an equilibrium tie line is

ADV Eq. 5-3
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Under full equilibrium in an alloy with over-all composition the potentials are

chosen to obey mass balances

ADV Eq. 5-4

where is the fraction of α and  is the fraction of β. It may then seem as there is

one equation more than unknowns but it should be kept in mind that also the fraction is

unknown and has to be determined from ADV Eq. 5-4, i.e. there is a unique solution.  The
lever rule is obtained by rearranging the equation and then in a phase transformation the
flux balance equations replace this equation.

5.2 Condition for Fast Reaction Controlled by a Fast Diffuser

In a system where there are large differences between the diffusion rates of the components
there is a possibility to have a fast reaction without the need of any redistribution of the
more sluggish elements. In metals elements such as H, C and N are smaller than the metal
atoms and occupy the empty spaces between them, i.e. the interstices. They are thus often
called interstitial elements in contrast to the metal atoms called substitutional elements. For
example, in the previous example Mn can only replace Fe whereas C can go to any empty
interstice. This means that diffusion of interstitials is usually much faster than that of
substitutional atoms.

Obviously the conditions for a fast reaction can sometimes be fulfilled and sometimes not. In
the example of the steel Fe-1Mn-0.2C they are fulfilled at 750 °C during the early stages but
not at 800 °C, nor at the later stages at 750 °C.

As an illustration we now consider the transformation from austenite to ferrite in the system
Fe-Mn-C. The migration rate and the interfacial tie line (Figure 5-2 in "Introduction to
Diffusion Problems in Multicomponent Alloys" on page 89) are obtained by solving the two
independent flux balance equations of type , one equation for C and

one for Mn. The question now is; is it possible to find an interfacial tie line without any long-
range redistribution of Mn? Such a tie line is defined by the fact that the content of
substitutional elements in the growing ferrite is the same as that of the initial austenite.
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Consider the alloy marked with a star in Figure 5-3. The tie line for no long-range
redistribution of Mn is plotted to the left and the corresponding Mn profile to the right.

Figure 5-3: Left: schematic isothermal section of Fe-Mn-C. The alloy marked with a star
denotes the over-all alloy composition, i.e. that of the initial austenite.  Right: corresponding
Mn profile when there is no long range redistribution of Mn.

In order to maintain the local equilibrium there must be a spike in Mn content in austenite
close to equilibrium. As the growing ferrite has a much lower C content than the austenite
there must be a driving force for C diffusion in austenite away from the moving interface.
This means that the fast reaction can proceed as long as the carbon activity far away from
the interface is lower than at the interface. In Figure 5-3 the lines representing the carbon
activity at the interface and far away from it have been indicated as dashed vertical lines.
After some time the carbon activity far away will start to increase due to the finite size of the
system and the migration rate will slow down and there is time for redistribution of Mn. The
fast reaction has come to an end and the slow reaction can be seen. If the initial alloy is on
the right-hand side of the line representing the carbon activity at the interface fast reaction
is not possible.  The critical alloy composition thus lies on the intersection of the Mn content
and the C activity line representing the interface. If one plots this intersection for all possible
Mn contents one gets approximately the line as indicated in Figure 5-4.
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Figure 5-4: Left: isothermal section of Fe-Mn-C at 750 °C. Right:  isothermal section of Fe-Mn-
C at 800 °C. The line going from Fe-Mn side to Fe-C denotes the border line between fast and
slow reaction.

Alloy compositions on the left side of the border line will grow initially by a fast reaction
whereas those on the right side can only grow by slow reaction. From the lever rule or a
thermodynamic calculation we find that at full equilibrium in the Fe-1Mn-0.2C steel at 750 °C
there will be 55% ferrite. We can roughly estimate the fraction of ferrite that can form by a
fast reaction from Figure 5-4 left. The tie line that represents no Mn partitioning, i.e. that
end at 1 mass% Mn in ferrite, ends at around 0.27 mass% C in austenite. If we neglect the
carbon content in ferrite we have from a mass balance for C that i.e.

which is in reasonable agreement with the plateau shown in Figure 5-8 in

"Example: Isothermal Formation of Ferrite from Austenite in Steel Fe-1Mn-0.2C" below.

5.3 Example: Isothermal Formation of Ferrite from Austenite in
Steel Fe-1Mn-0.2C

This example is identical to the isothermal reaction described in "Example:
Ferrite Formation and Dissolution in an Fe-0.2C Alloy" on page 77 with the
difference that there is 1 mass% Mn.

Task: Consider the formation of ferrite at 800 °C.
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The result of the calculation is now dramatically different. In the original example, see Figure
4-13 and Figure 4-14, we found that full equilibrium was established more or less within a
minute whereas hardly anything has happened at this time when we have 1 mass % Mn. In
fact we have to increase the simulation time to more than an hour to see any reaction.
Compare Figure 5-5 with Figure 4-14.

Figure 5-5: Calculated volume fraction bcc as function of time at 800 °C in Fe–1Mn-0.2C
using logarithmic scales. Compare with Figure 4-14 for Fe-0.2C.

If we repeat the calculation at a lower temperature, say 750 °C we find that ferrite forms,
see Figure 5-6 and Figure 5-7.
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Figure 5-6: Calculated volume fraction bcc as function of time at 750 °C in Fe–1Mn-0.2C.

As can be seen a substantial fraction of ferrite has formed already within a minute although
not as much as in the alloy without Mn at 800 °C. However, equilibrium is clearly not
established within 1 minute and we prolong the calculation to 3 h (Figure 5-7), and plot the
result using a logarithmic time scale.
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Figure 5-7: Calculated volume fraction bcc as function of time at 750 °C in Fe–1Mn-0.2C using
logarithmic time scale.

Although the growth rate starts to level out for times longer than minutes, equilibrium is not
established because the curve does not become completely horizontal. If we prolong the
simulation to cover 1000 h and again plot the result, see Figure 5-8, we find a very
interesting result. It seems as the reaction after slowing down and almost reaching a plateau,
starts again at longer times. However, such a statement is incorrect; the plateau is just a
consequence of the logarithmic time scale. A correct statement is rather that the reaction
can be represented by two different reaction rates, one fast and one much slower. It seems
reasonable to assume that the fast reaction is controlled by fast C diffusion in austenite and
that the slow reaction is controlled by much slower Mn diffusion in austenite. We may check
this idea by looking at the diffusivities of C and Mn in austenite; and

, respectively.

Mn thus diffuses 6 orders of magnitude slower than C! Again using the Einstein relation to
estimate the time needed for equilibration of a system with size 10 µm we find around 1
minute for C and more than 10 000 h for Mn. This is in reasonable agreement with Figure 5-
8. The following question then arises; how is it possible to have a reaction controlled by C
diffusion?

97



Figure 5-8: Calculated volume fraction bcc as function of time at 750 °C in Fe–1Mn-0.2C using
logarithmic time scale.

The only possibility is that the reaction may occur without the need of Mn diffusion. If this is
the case the ferrite that forms must inherit the Mn content of the parent austenite. We thus
plot the C and Mn concentration profiles after 1 min (Figure 5-9) a time that is long enough
to allow C diffusion but too short to allow any Mn diffusion.
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Figure 5-9: Calculated C and Mn concentration profiles close to phase interface after 1 min at
750 °C in Fe–1Mn-0.2C.

Figure 5-9 shows that although there is a substantial C redistribution the ferrite that forms
has the same Mn content as the parent austenite except for a spike close to the interface.
The Mn spike also yields a spike in C content but it is easy to check, by plotting, that the C
activity is constant in the spike. This is clearly shown in Figure 5-10 that demonstrates the
equilibration of C. A constant C activity is approached.
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Figure 5-10: Calculated C activity profiles after 20 and 60 s at 750 °C in Fe–1Mn-0.2C.

5.4 Example: Ferrite Formation During Normalizing of Steel Fe-
1Mn-0.2C

This is the same as "Example: Austenite Formation in a Normalized Steel" on
page 87 except that we now also have 1 mass % Mn. However, we shall start
looking at the ferrite formation during normalizing.

Task: Investigate the ferrite formation during normalizing.

An isoplethal section (vertical section) calculated for 1 mass % Mn is shown in Figure 5-11
and an isothermal section at 706 °C is shown in Figure 5-12.
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Figure 5-11: Calculated isoplethal section Fe-1 mass% Mn.

Figure 5-12: Calculated isothermal section Fe-Mn-C at 706 °C

The temperature 706 °C was chosen because it is the temperature below which cementite
starts forming in Fe-1Mn-0.2C as in Figure 5-12. However, the calculation shows us that we
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do not enter the ferrite + cementite two-phase field until a lower temperature; 698 °C (see
Figure 5-11), where we expect normal pearlite to form.

Now we are going to use the Diffusion Module (DICTRA) to treat the cooling from 850 to 698
°C with a cooling rate of 0.1 K/s typical for normalizing. The conditions are similar to the
previous simulations except that we now start with also 1 mass% Mn.

Figure 5-13: Calculated C and Mn concentration profiles after cooling from 850 to 698 °C with
cooling rate 0.1 K/s. There is only long range redistribution of C.

Figure 5-13 shows that there is only long-range redistribution of C during cooling and, except

for a spike close to the α/γ phase interface the carbon content is constant. However, it is
much lower than the eutectoid composition in the binary Fe-C system and what we would
expect from an isothermal section at 698 °C.

In Figure 5-14 we have plotted the Mn content only and we see that except for a very narrow

spike in γ close to the interface there is no redistribution of Mn, i.e. the transformation is
partitionless. The growing ferrite has the same Mn content as the initial austenite. Obviously
the cooling is slow enough to allow equilibration of C but not of Mn. If this is the case the C
activity should be the same all over the system. Such a plot is shown in Figure 5-15 and
indeed the carbon activity relative graphite is almost constant with a very small in the
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austenite. Diffusion in austenite is much slower than in ferrite and there is not been time
enough to completely level out the carbon activity.

Figure 5-14: Calculated Mn concentration profile after cooling from 850 to 698 °C with cooling
rate 0.1 K/s. Except for a very narrow spike in γ close to the interface there is no redistribution
of Mn, i.e. the transformation is partitionless.

103



Figure 5-15: Calculated carbon activity relative graphite after cooling from 850 to 698 °C with
cooling rate 0.1 K/s. The carbon activity is almost constant with a very small variation in
austenite.

One may then wonder how long time it would take to also equilibrate Mn. As usual we may
use the Einstein relation, i.e. . The diffusion coefficient for Mn in austenite at 698

°C is and if we insert a diffusion distance of 5 µm we find

years

We may do an isothermal holding simulation at this temperature and extend to
unrealistically long times. We then find that there is a slight Mn gradient in austenite after 3
years but after 6 years it is almost leveled out and full equilibrium is established. It thus clear
that the simulations predict that after normalizing we could hardly have full equilibrium
because there will be negligible Mn partitioning during cooling before pearlite starts
forming.

Figure 5-16: Calculated fraction of ferrite during cooling from 850 to 698 °C (0.1 K/s) and
subsequent isothermal holding. Timescale logarithmic in days.
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5.5 Example: Austenite Formation After Normalizing of Steel Fe-
1Mn-0.2C

Task: Simulate the austenitizing after normalizing, i.e. the starting state in
Figure 5-13. This is easily done simply by adding a heating step in the thermal
profile of the "Example: Ferrite Formation During Normalizing of Steel Fe-1Mn-
0.2C" on page 100 simulation. We add heating with a rate of 1 K/s up to 850 °C
and then isothermal holding to totally 1 h.

The result is shown in Figure 5-17 and Figure 5-18.

Figure 5-17: Calculated fraction of ferrite during heating from 698 to 850 °C (1 K/s) and
subsequent isothermal holding.
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Figure 5-18: C concentration profile during heating and austenitization

The C concentration profiles in the above figure shows some interesting “spikes” at a
distance around 6 µm. These stems from “spikes” in the Mn profile as shown in Figure 5-19
plotted at 27 min, i.e. after 100 s of heating, when the temperature has reached 798 °C.
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Figure 5-19: Mn concentration profile after 100 s of heating (1 K/s) at 798 °C.

Mn lower the C activity and where the Mn content is high the C will thus be high in order to
have a constant C activity. The two spikes are related to reversion of the interface motion. In
Figure 5-19, the phase boundary moves to the left and corresponds to a very sharp negative
spike in Mn content. This spike is, however, in the ferrite.

From an industrial processing view it is very important that Mn partitioning is negligible
because if it was substantial much longer austenitization times were needed because the
process would then be controlled by slow Mn diffusion in austenite.
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6 Diffusion in Dispersed Structures

6.1 Example: Internal Carburization of a Ni-Cr Alloy Using Homo-
genization

In many practical situations there is long-range diffusion in dispersed multiphase structures
rather than in one phase. Important examples are oxidation of alloys containing very reactive
elements which will lead to so-called internal oxidation. Oxygen then diffuses over long
distances through a structure of dispersed oxides. Other examples are internal carburizing
and nitriding of alloys. If we are not interested in the details of the microstructure but only
the long-range diffusion one can use approximate methods based on a mathematical
approximation called homogenization. The multiphase structure is then replaced by a
hypothetical one-phase structure with effective properties.

Remark on internal oxidation: Simulations based on the homogenization method
are time consuming in such cases where the contents of the diffusing elements
are low in the matrix phase. Unfortunately, this is the case particularly for
internal oxidation which is of large practical importance. Nevertheless, the
calculations are stable and the results will eventually be found even for complex
cases.

Different Ni-Cr alloys are exposed for a sooting environment at 850 °C and one finds that
they have been unintentionally carburized. This can be seen because a population of carbide
particles can be observed close to the surface of the alloy. This is expected because Cr forms
a number of carbides whereas Ni is less prone to form carbides. We thus expect internal
carburizing when the alloys are exposed for such high carbon activities.

Task: Set the C activity to unity relative graphite and simulate the carburization
process in Ni-25mass % Cr and Ni-30 mass% Cr for 1000 h at 850 °C using the
homogenization simulation.
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This is done in the same way as the examples in the " One-Phase Diffusion Problems" on
page 30 except that we add in the region also the phases that we want to allow as dispersed
phases. If there are several phases in a region the Diffusion Module (DICTRA) automatically
launches a default homogenization simulation. Some results for two different alloys are
shown in Figure 6-1 and Figure 6-2.

Figure 6-1: Internal carburizing of Ni-25Cr at 850 °C and carbon activity of unity relative
graphite. Left: Carbon concentration profiles at different times indicated. Right: Fraction of
carbides after 1000 h.
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Figure 6-2: Internal carburizing of Ni-30Cr at 850 °C and carbon activity of unity relative
graphite. Left: Fraction of carbides after 1000 h. Right: Cr content in fcc matrix after 1000 h.

As can be seen the more carbon-rich phases form closer to the surface where the carbon
activity is highest. This is expected from thermodynamics because the higher the activity of
an element the more stable are the phases which are rich in that component. Figure 6-2,
bottom image clearly reveals the Cr depletion of the fcc matrix close to the surface as a
consequence of the carburization.

There are two additional examples about diffusion in dispersed structures.
However, these examples require the steel thermodynamic (TCFE) and kinetic
(MOBFE) databases to actually run the simulations.

6.2 Example: Internal Nitriding an Fe-Ni-Cr Alloy Using Homo-
genization

This example requires a license for the TCFE and MOBFE databases. If you do not
have these databases, you can still follow along but you will not be able to
perform the simulation.
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Consider internal nitriding in air of an austenitic stainless steel containing high contents of
Cr. It should be pointed out that Fe itself cannot be nitrided by air but much higher nitrogen
activities are needed. This means that an atmosphere of technically pure N2 gas can be
considered as inert when heat treating Fe. In fact, when deliberately nitriding Fe and low
alloy-steels one must thus use very high nitrogen partial pressures, in the order of 0.5 – 1
Mbar. Such high partial pressure cannot be obtained by applying N2gas but one has to use
very reactive N-containing substances, usually NH3. However, Cr has a very strong tendency
to react with N and consequently Cr containing steels or superalloys will form nitrides by
internal nitriding even in air.

Task: Consider an austenitic stainless steel Fe-20Ni-25Cr exposed for air (
atm) at 1000 °C. Predict the evolution of the nitriding process.

The partial pressure atm is calculated to the N activity used in DICTRA

atm1/2. The results are shown in the figure below.

Figure 6-3: Internal nitriding of Fe-25Cr-20Ni in air at 1000 °C. Left: Fraction of CrN after times
indicated. Right: Over-all N content at times indicated.
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The simulations are in reasonable agreement with experimental results reported by Young
and shows that N2 can by no means be considered as inert when heat treating stainless
steels. It should be emphasized that below the layer of internal nitriding there is a more or
less complete nitriding of the austenitic matrix.

6.3 Example: Carbon Transfer in a Steel Composite: A Full Scale
Industrial Problem

This example requires a license for the TCFE and MOBFE databases. If you do not
have these databases, you can still follow along but you will not be able to
perform the simulation.

In this example we will demonstrate the applicability of the homogenization method to a
practical problem having the full scale industrial complexity. The composite is made by
combining two different steels; one high-speed steel of type M2 and one low-alloy steel. The
idea behind this composite is that the high-speed steel, a highly alloyed tool steel, should give
hardness and wear resistance whereas the low-alloy steel should give the load bearing
capacity. The composition of the two steels is given in Table 6-1.

In the production of the steel composite the two steels are first welded together. The joint is
subsequently annealed for several hours at 760 °C to get a softer structure to allow for
machining of the high-speed steel. After this the whole composite is austenitized at 1215 °C
and quenched to form martensite. However, the resulting properties are not as good as
expected and a metallographic examination reveals a there is a reaction zone around the
joint.

Task: Predict the change in composition during the two steps in the
manufacturing of the steel composite.
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Table 6-1: The two steel in the steel composite

C Cr Mo W V

HSS 0.85 4 5 6 2

Low-alloy 0.45 1 1 - 0.15

To approach this problem we start by calculating the equilibrium state in each steel
separately. This is easily done in Thermo-Calc. The equilibrium fraction of phases are given
in Table 6-2. The temperature is high enough to dissolve all cementite in the low-alloy steel
and the pearlite will thus transform to austenite. At this temperature there is ca 50/50
austenite/ferrite and minor fractions of alloy carbides in the low-alloy steel. The calculation
also gives us the carbon activities in the two steels. Expressed relative graphite they are
0.058 in the high-speed steel and 0.59 in the low-alloy steel. It is remarkable that the low
alloy steel has a 10 times higher carbon activity than the high-speed steel despite its much
lower carbon content. The reason is that the latter has a much higher content of carbide
forming elements and most of the carbon is tied up in carbides.  Nevertheless, this difference
has large consequences because it gives a strong driving force for carbon to diffuse from the
low alloy to the high alloy steel despite the much higher carbon content of the latter, i.e. up-
hill diffusion. In fact, this example is similar to the Darken experiment discussed earlier
except that we now have to consider several phases, mainly ferrite or austenite and different
carbides, in the two parts of the composite.

We are now ready to set up the simulation. We add the six phases we found in the
equilibrium calculation and the homogenization simulation will thus be activated
automatically. Despite the fact that the calculation accounts for six different elements and
six different phases it is surprisingly fast and is completed within a few minutes. It should be
mentioned that we have neglected elements like Si and Mn that typically has a content below
0.5 mass%.
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Table 6-2: Equilibrium fraction of phases in the two steels at 760 °C

Stable phase Volume fraction

Low-alloy steel High-speed steel

BCC_A2 0.496 0,833

FCC_A1 0,469 -

MC(FCC_A1#2) 0,003 0.034

M2C (HCP_A3#2) 0,001 -

M23C6 0,031 0.04

M6C 0 0.093

From the simulation we notice that although the high-speed steel contains twice as much
carbon as the low alloy steel C the latter is decarburized and the tool steel carburized. This is
a direct consequence of its much lower carbon activity.

Figure 6-4: Left: Over-all C-concentration profiles in a steel composite heat treated at 760 °C
for times indicated.  Right: Fraction of phases after 6 h at 760 °C.
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The decarburizing of the low alloy steel may lead to problems because its decarburized zone
has a much lower strength than the original low-alloyed steel.

One may now wonder if the problem becomes worse as a consequence of the austenitizing
or not. In a first step we calculate the equilibrium in each steel separately at the austenitizing
temperature 1215 °C, i.e. assuming that there is no reaction between the steels. We then
find that the low-alloy steel is fully austenitic with a carbon activity relative graphite of 0.10.
The high-speed steel is austenitic with MC and M6C carbides and a carbon activity relative
graphite of 0.08. This simple calculations show that the difference in carbon activity is much
smaller and almost negligible at the austenitizing temperature. This means that we would
expect a considerable reversion of the carbon transfer during austenitizing, i.e. a healing.

This process can be simulated using DICTRA and the output after 6 h at 760 °C as input. The
result is shown below.

Figure 6-5: Left: Over-all C-concentration profiles in a steel composite heat treated at 760
and 1215 °C for times indicated.  Right: Fraction of phases after 6h at 760 and 3 min at 1215
°C.

The simulation thus confirms the conclusion from the thermodynamic calculation, i.e. that
there is a healing process during austenitizing.
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