

DICTRA On-line Training

Åke Jansson, John Ågren, Carl-Magnus Lancelot, André Schneider, Johan Bratberg

16 – 18 April 2024

www.thermocalc.com

Diffusion Module (DICTRA)

Day 1

9:00	Introduction to DICTRA (= Diffusion Module)
9:40	Example - Up-hill diffusion in the Fe-Si-C system
10:25	Q&A
10:40	Example – Carburisation and de-carburisation
11:10	Example – Particle growth
11:45	Q&A
12:00	Home assignment 1

Download material for today:

https://download.thermocalc.com/courses/Diff-Day1/

Diffusion Module (DICTRA)

Day 2

9:00	Home assignment 1
9:10	Example - Solidification using Scheil
9:30	Example - Scheil with real back-diffusion in the solid.
9:50	Example – DICTRA solidification (Moving phase boundary)
10:30	Q&A
10:45	Diffusion theory and numerics
11:15	Example – Homogenisation model: Diffusion couple
11:45	Q&A
12:00	Home assignment 2

Schedule

Diffusion Module (DICTRA)

Day 3

9:00	Home assignment 2
9:10	Example – Dissolution of cementite particles
	(moving phase boundary calculation)
10:10	Console mode and macro files.
10:30	Q&A
10:45	Example – Gradient sintering in Cemented carbide
11:30	Trouble shooting
11:45	Q&A
12:00	End

The Software

- Software package for simulation of diffusion controlled reactions in multi-component alloys.
- Simulation on geometries, which may be reduced to one spatial coordinate (planar, cylindrical or spherical)
- Linked to Thermo-Calc, which provides all necessary thermodynamic properties.
- Development started over 35 years ago at:
 - Royal Institute of Technology in Stockholm, Sweden
 - MPI für Eisenforschung in Düsseldorf, Germany (only very early)
 - Thermo-Calc Software AB (from 1997 and on)

Basic calculation procedure

A numerical finite difference scheme is used for solving a system of coupled parabolic partial differential equations

Thermodynamic Databases (The CALPHAD approach)

Kinetic Databases (in a CALPHAD spirit)

Modelling of the atomic mobility

From absolute reaction-rate theory arguments Andersson and Ågren¹⁾ suggested:

$$M_{B} = M_{B}^{0} \exp\left(\frac{-Q_{B}}{RT}\right) \frac{1}{RT} \qquad \begin{cases} M_{B} & Mobility \text{ for element } B\\ M_{B}^{0} & Frequency \text{ factor}\\ Q_{B} & Activation & energy \end{cases}$$

When treating the composition dependency of the mobility, Jönsson²⁾ found it superior to expand the logarithm of the mobility rather than the value itself, i.e.

$$RT\ln\left[RTM_B\right] = RT\ln M_B^0 - Q_B$$

Because $\ln [RTM_i]$ is often found to have a fairly linear composition dependency

1. Andersson, Ågren, J Appl Phys 72(1992)1350 2. Jönsson, Scand J Metall 24(1995)21

Composition dependency

In a CALPHAD spirit the composition dependency is represented with a linear combination of the values at each endpoint of the composition space, and a Redlich-Kister expansion, i.e.

$$\Phi_B = \sum_{i} x_i \Phi_B^i + \sum_{i} \sum_{j>i} x_i x_j \left[\sum_{r=0}^{m} {}^r \Phi_B^{i,j} \left(x_i - x_j \right)^r \right]$$

where Φ_{R} represents RT ln $M_{R}^{0} - Q_{R}$ Ni-Al -11.5 ∆1573 □1523 ♦1473 Example: FCC Ni-Al -12.0 x1423 √1373 +1323 Ni LOGDC(FCC,AL,AL,NI) -12.5 *1273 -13.0 $\Phi^{\it Ni}$ Φ_{Ni}^{Ni} -13.5 Φ^{Al} Φ_{Ni}^{Al} -14.0 Al-14.5 Al ,Ni Al ,Ni Ni Φ Φ Al -15.0 0.05 0.10 0.15 0.20 X(AL)

Engström , Ågren, Z Metallkd 87(1996)92

Other effects on mobility

✓ Ferromagnetic ordering

✓ Chemical ordering

can have very strong effects on the mobility and are described by a separate term each in the mobility expression.

Mobility enhancement in <u>grain boundaries</u> or dislocations are not taken into account in the mobility databases. It can be handled in the software by entering cross sectional area fractions and a factor reducing the activation energy compared to the bulk (console mode only).

DICTRA application types

- Diffusion in single-phase systems
- Diffusion with moving interfaces
- Cell calculations (particle distributions, immobile interfaces etc.) only in Console mode or <u>use TC-PRISMA</u>
- Diffusion in dispersed systems <u>– only in Console mode</u>, *use*
- Homogenization model
- Coarsening or Ostwald ripening <u>– use TC-PRISMA</u>
- Growth of pearlite <u>– Console mode, very little used</u>.

DICTRA application types

- Diffusion in single-phase systems
- Diffusion with moving interfaces
- Cell calculations (particle distributions, immobile interfaces etc.) only in Console mode or <u>use TC-PRISMA</u>
- Diffusion in dispersed systems <u>– only in Console mode</u>, use
- Homogenization model
- Coarsening or Ostwald ripening <u>– use TC-PRISMA</u>

Growth of pearlite <u>– Console mode, very little used.</u>

DICTRA application types

Diffusion in single-phase systems

Straight-forward non-complex simulations, usually on homogenisation or carburisation treatments

Boundary conditions can be specified as functions of time, temperature and pressure.

Different functions may be used in different time intervals.

Also: Spatially non-isothermal simulations

Diffusion with a moving interface

n-1 unknowns:

n-2 chemical potentials. Velocity of phase boundary, ν

n-1 Flux Balance Equations:

$$v\left(c_{k}^{\alpha}-c_{k}^{\gamma}\right)=J_{k}^{\alpha}-J_{k}^{\gamma}$$

Sharp interface with assumption of local equilibrium (also para-equilibrium possible)

F-B Equations solved as:

$$\sum_{k=1}^{n-1} \left[v \left(c_k^\alpha - c_k^\gamma \right) - \left(J_k^\alpha - J_k^\gamma \right) \right]^2 < \varepsilon$$

Diffusion with a moving interface

Binary example: Fe-C

Ternary example: Fe-Cr-Ni

- $n = 3 \Longrightarrow two unknowns!$
- One a_i or μ_i (i.e. one tie-line)
- The velocity

Some application examples

- \square γ to α transformations in steel
- Growth and dissolution of particles
- Microsegregation during solidification
- \Box σ -phase precipitation in stainless steels
- Transient Liquid-Phase bonding of alloys
- Sintering of cemented carbides
- and much more ...

Cell calculations

Conditions for cell boundaries:

 \checkmark Equal diffusion potentials $\Phi_{\rm i}$ for the elements

$$\Phi_i = \mu_i - \mu_n$$
 for subst. elements
 $\Phi_i = \mu_i$ for interstitial elements

 \checkmark Flux balances to conserve the mass of the elements

$$rac{J_i^{ ext{cell}\#1}}{n^{ ext{cell}\#1}} = rac{J_i^{ ext{cell}\#2}}{n^{ ext{cell}\#2}}$$
 n,

n, cell distribution factors

 Growth or dissolution of particle distributions

- Competing growth or dissolution
- Interdiffusion across an immobile interface

Diffusion in dispersed systems

New matrix

compositions

Assumptions:

Calculate

new average

compositions

Solve

Diffusion

- Diffusion takes place in the matrix phase only.
- Equilibrium holds locally in each node.

A more general alternative:

the homogenization model

Equilibrium

calculations

 Carburisation of high-temperature alloys

- coating/substrate systems
- weldments between steels
- joints of dissimilar steels
- Gradient sintering of cemented carbide work-tool pices
 Engström et al, Met Mat Trans A 25A(1994)1127

Homogenization model

This approach allow us to account for diffusion in more than one phase

Equilibrium calculation for each slice Phase fractions Phase compositions Chemical potentials Mobilities Flux between slices "n-1" and "n"

$$J_k = \frac{-1}{V_m} \sqrt{\left[M_k x_k\right]_{n-1}^{eff} \left[M_k x_k\right]_n^{eff}} \frac{\Delta \mu_k}{\Delta z}$$

"Effective" $[M_k x_k]$ from combining rules

Larsson, Engström, Acta Mater 54(2006)2431 Larsson, Höglund, Calphad 33(2009)495

Case study: Micro-segregation during solidification

- ❑ VESPISM (Virtual Experiments to Solve Problems In Steel Metallurgy).
- Development of phase-field code (MICRESS) linked to Thermo-Calc.
- Solidification experiments were performed for alloys A D below as one assignment in this project.

Observed micro-segregation in Steel C

Line-scans across the dendrite arms

Steel C:

Fe - 0.8% Mn - 0.7%Si - 0.03%P - 0.4% C

peaks?

Analysis using DICTRA

Secondary dendrite arm spacing assumed to be 200 μm.

Cooling function

Cooling rate assumed to be 0.2 °C/s

- More advanced cooling functions may of course also be imposed.
- Also possible to instead define a condition on the rate of latent heat removal from the system.

Solidification range

Fraction of solid phases

Carbon profiles during solidification

Silicon and Manganese

Phosphorus

Segregation profiles after 610 s (when the last melt disappears)

Thermo-Calc Software

Segregation profiles after 1000 and 3000 s

The solution

Compound tubes for waste incinerators

After 4 h at 1100 °C 4L7 (0.18% C)

Sanicro28 (30.5% Ni, 27% Cr, 3.3% Mo, 1.8% Mn, 0.014% C)

Helander, Ågren, Nilsson, ISIJ Int 37(1997)1139

Interdiffusion in Ni-superalloys

From: C. E. Campbell, Metallurgy Division, NIST

See also: Campbell et al, Mat Sci Eng A 407(2005)135

Experimental work performed by T. Hansen, P. Merewether, B. Mueller, Howmet Corporation, Whitehall, MI.

Interdiffusion in Ni-superalloys

Kirkendall porosity prediction

From: C. E. Campbell, Metallurgy Division, NIST See also: Campbell et al, Mat Sci Eng A 407(2005)135
Coupled carbonitriding and internal oxidation

Fe-0.28C-1.15Cr-0.95Mn-0.27Si 850°C, 24 h

Micrograph and experimental data Arkhipov et al Met Sci Heat Treat 14(1972)508

Larsson, Ågren, HTM J Heat Treatm Mat 72(2017)19

Compatibility of Databases

Thermodynamic Database	Kinetic Database
SSOL2, SSOL4, SSOL5, SSOL6, SSOL7, SSOL8	MOB2
TCFE5 and earlier versions	MOB2
TCHEA2, TCHEA3+4+5, TCHEA6+7	MOBHEA1, MOBHEA2, MOBHEA3
TCFE6, 7, 8, TCFE9, TCFE10, TCFE11, TCFE12, TCFE13	MOBFE1, 2, 3, 4, 5, 6, 7, MOBFE8
TTNI8 and earlier versions	MOBNI1
TCNI4, TCNI5, TCNI6*	MOBNI2*
TCNI7, TCNI8	MOBNI3, MOBNI4
TCNI9+TCNI10+TCNI11, TCNI12	MOBNI5, MOBNI6
TTAL8 and earlier versions	MOBAL1 and BISHOP
TCTI4, TCTI5	MOBTI4
TCAL1+2+3, TCAL4, TCAL5, TCAL6+7, TCAL8, TCAL9	MOBAL3,4,5, MOBAL6, MOBAL7, MOBAL8
TCMG1+2+3+TCMG4+TCMG5, TCMG6	MOBMG1, MOBMG2
TCCU1, TCCU2, TCCU3, TCCU4, TCCU5 + TCCU6	MOBCU1, 2, 3, 4, MOBCU5

* Pairing of TCNI6 and MOBNI2 is not possible for the LIQUID phase.

Some DICTRA specific concepts.

Terminology needed mostly for Console Mode

A "box" filled with the phase(s) where diffusion takes place. Can be given any name.

The region has two boundaries, left and right.

Distribution of node points for numerical calculations (inside the region).

Concentration, C_k of an element as a function of distance z.

Conditions valid for entire system, T and P.

Boundary Conditions

a_c=1 (carburization)

Conditions that apply to region boundaries (can be functions of time and temperature).

DICTRA Project in Graphical mode

Typical calculation setup - Graphical

- 1. Select thermodynamic and kinetic data
- 2. Choose units for composition and distance
- 3. Enter geometry
- 4. Enter region(s)
- 5. Enter grid(s) in region(s)
- 6. Enter phase(s) in region(s)
- 7.Enter composition(s) for the phases
- (8. Set boundary conditions)
- 9. Set condition for temperature
- 10. Set simulation time
- 11. Perform simulation

Diffusion Calculator in Graphical mode

Conditions Options	Joioware
Composition unit: Mass percent Length unit: m Geometry	Set composition unit & length unit
Planar	Set geometry
Diffcouple	 Visual of the region with its grid.
Diffcouple Left Interface Boundary Show left interface boundary Region Name: Diffcouple Width: 0.05 m 200 points and type Linear Composition profiles: Edit Right Interface Boundary * Show right interface boundary	 Click to set phase to form on the left. Click plus to add more regions. Name the predefined 1st region. Set region size, grid points and type. Set matrix phase in region. Click plus to add more phases. Set the composition for matrix phase. Click to set phase to form on the right.
Left Boundary Condition Closed system Closed system Thermal Profile Isothermal Non-isothermal Temperature: 1323.0 Kelvin Simulation time: 1.0E10 Seconds	 Select isothermal or not. If not, a box for editing T-profile will open. Set iso-thermal temperature.
	Set simulation time.

Input of T and c – Console mode

- Temperature (T) can be entered as a function of time (and distance)
- Many different functions can be used (+, -, *, **, SQRT(X), EXP(X),LOG(X),SIN(X))
- Initial concentration can be entered as a function of distance or read from a file
- Special functions e.g. error-functions
 (erf(x)) and heaviside step functions
 (hs(x)) can be used.

Input of c and T – Graphical mode

Time [h]

Thermo-Calc

One phase Example - Uphill diffusion

Uphill diffusion in a Fe-Si-C alloy

 In a classic experiment (published 1949), L.S. Darken welded together two steels having similar C-contents, but with different Si-contents.

<u>Steel 1</u>	Steel 2
3.8 %Si	0.05 %Si
0.49 %C	0.45 %C

 After annealing Darken was able to conclude that C had diffused up its own concentration gradient, so-called "uphill diffusion". Darken thereby proved that it is the difference in C-activity rather than the difference in C-concentration that is the driving force for diffusion. Darken, Trans AIME 180(1949)430

DICTRA Setup

- One single region entered.
- Only FCC entered into this region, i.e. single-phase.
- Composition profiles entered with a step in center.
- Closer spacing between grid points towards the center.
- Global conditions: Constant temperature, T=1050 C.
- Boundary conditions: Zero-flux (= closed system).

Linear grid

Equidistant distribution of node points.

Geometric Grid

Node points represents geometric series

Double Geometric Grid

R<1 R>1

Uphill diffusion

Uphill diffusion

Q&A

One phase Example - Carburisation

Example – diffusion through a tube wall

Demonstrates the use of:

- Geometries
- Boundary conditions
- Reference states

Alloy composition: Fe – 0.6Mn – 0.7Si – 0.05C (wt-%)

DICTRA Geometries

Infinitely wide plate of a certain thickness.

Infinitely long cylinder of a certain radius.

Sphere with a certain radius.

Boundary conditions

In Graphical Mode:

Closed System (this is default) Mixed zero flux and activity (Very useful!) Composition

There are some more possible boundary conditions in Console Mode:

Fix flux value (very theorethical)
Potential/Activity flux function (for real specialists)
Iterative activity flux function (for real specialists)
Gas (allows for growing/shrinking region)

U-fraction

The composition variable used internally in DICTRA

"Mole fraction with respect to substitutional elements only"

Natural choice if it is assumed that

•The partial molar volume is the same for all substitutional elements (V_s)

•The partial molar volume is zero for all interstitial elements

Example: System Fe-Cr-C, u_k is u-fraction, x_k is mole fraction

$$u_{Cr} = \frac{x_{Cr}}{x_{Cr} + x_{Fe}} = \frac{x_{Cr}}{1 - x_C} \quad u_{Fe} = \frac{x_{Fe}}{x_{Cr} + x_{Fe}} \quad u_C = \frac{x_C}{x_{Cr} + x_{Fe}}$$
$$u_{Cr} + u_{Fe} = 1$$
$$c_k = u_k / V_S \quad [\text{mol/m}^3]$$

Results – diffusion through a tube wall

Moving Phase boundary Example - Growth of a particle

Moving Phase Boundary Calculations

- Used for calculating growth or dissolution of a phase
- Assumptions:
 - Local equilibrium holds at the phase boundary, i.e. concentrations at the boundary can be calculated from an equilibrium calculation in Thermo-Calc.
 - ✓ Diffusion controls the movement of the phase boundary
- □ Application examples:
 - Carbide dissolution
 - Solidification
 - Growth of σ -phase in a stainless steel

Moving phase boundary simulation

Solve diffusion equation in each phase

Calculate displacement of phase boundary

Thermo-Calc is used to find tie-lines

Diffusion with a moving interface

Moving Phase Boundary

Moving phase boundary simulations may be set up in DICTRA in two different ways:

1) Introducing two or more adjacent regions containing different phases

2) Entering an inactive phase (formed when thermodynamically stable)

inactive phase \longrightarrow Phase 1

Some possible geometries

Growth or dissolution of a spherical precipitate

Growth of spherical film (Grain-boundary film) **Planar growth**

Growth of cylindrical precipitate

Example: Particle growth

Al – 0.2 wt-% Sc

Quench to 450°C.

- \rightarrow Supersaturated FCC
- → Driving force for the precipitation of Al₃Sc
- → Diffusion controlled growth of Al₃Sc

	Oil Diffusion Coloulate 1	
Martine Lawrence	Diffusion Calculator 1	
ditions Options		
mposition unit: Mass percent 🗸		
noth unit: Micrometer v		
enmetry		
(and)		
egion1		
		• • • • • • •
Region1		
Left Interface Boundary		
 Hide left interface boundary 		
Allow phase to form: AL3SC Driving force: 1.0E-5		
🔕 🤤 Region		
Namet Bogien1		
Nome: Neurona		
Width: 2.0 µm 50 points and type Geometric V	Ratio: 1.08 🜩	
Width: 2.0 µm 50 points and type Geometric V Image: Im	Ratio: 1.08 🜩	
Width: 2.0 µm 50 points and type Geometric ✓ ③ ④ Phase: FCC_A1 ✓ Composition profiles: Edit	Ratio: 1.08 🜩	of FCC_A1
Width: 2.0 µm 50 points and type Geometric \lambda Image: Ima	Ratio: 1.08 🜩	of FCC_A1
Name: region1 Width: 2.0 µm 50 points and type Geometric \vee Image:	Ratio: 1.08	of FCC_A1 Al ✓
Width: 2.0 µm 50 points and type Geometric ✓ Image: Second Secon	Ratio: 1.08 -	of FCC_A1
Width: 2.0 µm 50 points and type Geometric ✓ Image: Second Secon	Ratio: 1.08 -	of FCC_A1
Wallt: Region 1 Width: 2.0 µm 50 points and type Geometric ✓ Image: Second Sec	Ratio: 1.08 A Initial Composition of Dependent component: Component Sc: 0.21 0.20	of FCC_A1
Walth: 2.0 µm 50 points and type Geometric ✓ Image: Second Secon	Ratio: 1.08 - Initial Composition of Dependent component: Component Sc: 0.21 0.20 0.19	of FCC_A1
Width: 2.0 µm 50 points and type Geometric ✓ Image: Second Secon	Ratio: 1.08 + Initial Composition of Dependent component: Component Sc: 0.20 0.19 0.19	of FCC_A1
Width: 2.0 µm 50 points and type Geometric ✓ Image: Second Secon	Ratio: 1.08 Initial Composition of Dependent component: Component Sc: 0.21 0.20 0.19 0.18	of FCC_A1
Width: 2.0 µm 50 points and type Geometric ✓ Image: Second Secon	Ratio: 1.08 Initial Composition of Dependent component: Component Sc: 0.21 0.20 0.19 0.18 0.17	of FCC_A1
Width: 2.0 µm 50 points and type Geometric ✓ Image: Second secon	Ratio: 1.08 A Initial Composition of Dependent component: Component Sc: 0.21 0.20 0.19 0.18 0.17	of FCC_A1
Walth: 2.0 µm 50 points and type Geometric ✓ Width: 2.0 µm 50 points and type Geometric ✓ Omega Phase: FCC_A1 ✓ ✓ Composition profiles: Edit Right Interface Boundary Show right Interface boundary Show right Interface boundary Closed system Closed system Closed system Thermal Profile Isothermal Non-isothermal Temperature: (450.0) Coleius 	Ratio: 1.08 A Initial Composition of Dependent component: Component Sc: 0.21 0.21 0.19 0.19 0.18 0.17 <	of FCC_A1
Walth: 2.0 µm 50 points and type Geometric ✓ Width: 2.0 µm 50 points and type Geometric ✓ Omposition profiles: Edit ✓ ✓ Composition profiles: Edit Right Interface Boundary Show right Interface boundary ✓ Show right Interface boundary Left Boundary Condition Closed system ✓ Closed system ✓ Thermal Profile Isothermal Non-isothermal ✓ ✓ Temperature: 450.0 Celsius ✓ ✓	Ratio: 1.08 A Initial Composition of Dependent component: Component Sc: 0.21 0.20 0.19 0.18 0.17	of FCC_A1
Width: 2.0 µm 50 points and type Geometric ✓ Image: Second Secon	Ratio: 1.08 A Initial Composition of Dependent component: Component Sc: 0.21 0.20 0.19 0.18 0.17	of FCC_A1
Width: 2.0 µm 50 points and type Geometric ✓ Width: 2.0 µm 50 points and type Geometric ✓ Width: 2.0 µm 50 points and type Geometric ✓ Image: Solution profiles: Edit Image: Solution profiles: Edit Image: Solution profiles: Edit Image: Solution profiles: Edit Image: Solution profiles: Edit Image: Solution profiles:	Ratio: 1.08 A Initial Composition of Dependent component: Component Sc: 0.21 0.20 0.19 0.18 0.17	of FCC_A1

Results: Particle growth

07 4 ×

Simple mode 🛛 🗸

10⁴

Q&A

Home assignment 1

Home assignment 1: Particle growth

Try to make the Al-Sc simulation we just performed more realistic by adding the cooling from single-phase FCC at 600 °C to 450 °C. Let's assume this cooling takes 2 seconds.

Does this change how much the phase interface has moved after 1 hour?

- 1) You have to change the setting to non-isothermal.
- 2) Also consider how you can compare the two results after time=3600 s.